

C++ For Dummies®, 7th Edition

Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774,
www.wiley.com

Copyright © 2014 by John Wiley & Sons, Inc., Hoboken, New Jersey

Media and software compilation copyright © 2014 by John Wiley & Sons, Inc. All rights
reserved.

Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
the prior written permission of the Publisher. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc.
and may not be used without written permission. All other trademarks are the property of their
respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor
mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE
AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO
THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND
SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT
LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO
WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL
MATERIALS. THE ADVICE AND STRATEGIES CONTAINED HEREIN MAY NOT BE
SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING
LEGAL, ACCOUNTING, OR OTHER PROFESSIONAL SERVICES. IF
PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF A COMPETENT
PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR
THE AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE
FACT THAT AN ORGANIZATION OR WEBSITE IS REFERRED TO IN THIS WORK
AS A CITATION AND/OR A POTENTIAL SOURCE OF FURTHER INFORMATION
DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES THE
INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR
RECOMMENDATIONS IT MAY MAKE. FURTHER, READERS SHOULD BE AWARE
THAT INTERNET WEBSITES LISTED IN THIS WORK MAY HAVE CHANGED OR
DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND WHEN IT IS
READ. FULFILLMENT OF EACH COUPON OFFER IS THE SOLE RESPONSIBILITY

http://www.wiley.com
http://www.wiley.com/go/permissions

OF THE OFFEROR.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-
4002. For technical support, please visit www.wiley.com/techsupport.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit
www.wiley.com.

Library of Congress Control Number: 2013958400

ISBN 978-1-118-82377-4 (pbk); ISBN 978-1-118-82382-8 (ebk); ISBN 978-1-118-82383-5
(ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.wiley.com/techsupport
http://booksupport.wiley.com
http://www.wiley.com

C++ For Dummies
Visit www.dummies.com/cheatsheet/cplusplus to view this book's
cheat sheet.

Table of Contents
Introduction

About This Book

Icons Used in This Book

Beyond the Book

Where to Go from Here

Part I: Getting Started with C++ Programming
Chapter 1: Writing Your First C++ Program

Grasping C++ Concepts

Installing Code::Blocks
Windows

Ubuntu Linux

Macintosh

Creating Your First C++ Program
Creating a project

Entering the C++ code

Cheating

Building your program

Executing Your Program

Reviewing the Annotated Program
Examining the framework for all C++ programs

Clarifying source code with comments

Basing programs on C++ statements

Writing declarations

Generating output

Calculating Expressions
Storing the results of an expression

Examining the remainder of Conversion

Chapter 2: Declaring Variables Constantly
Declaring Variables

Declaring Different Types of Variables
Reviewing the limitations of integers in C++

Solving the truncation problem

Looking at the limits of floating point numbers

Declaring Variable Types
Types of constants

Range of Numeric Types

Special characters

Wide Loads on Char Highway

Are These Calculations Really Logical?

Mixed Mode Expressions

Automatic Declarations

http://www.dummies.com/cheatsheet/cplusplus

Chapter 3: Performing Mathematical Operations
Performing Simple Binary Arithmetic

Decomposing Expressions

Determining the Order of Operations

Performing Unary Operations

Using Assignment Operators

Chapter 4: Performing Logical Operations
Why Mess with Logical Operations?

Using the Simple Logical Operators
Storing logical values

Using logical int variables

Be careful performing logical operations on floating-point variables

Expressing Binary Numbers
The decimal number system

Other number systems

The binary number system

Performing Bitwise Logical Operations
The single-bit operators

Using the bitwise operators

A simple test

Chapter 5: Controlling Program Flow
Controlling Program Flow with the Branch Commands

Executing Loops in a Program
Looping while a condition is true

Using the autoincrement/autodecrement feature

Using the for loop

Avoiding the dreaded infinite loop

For each his own

Applying special loop controls

Nesting Control Commands

Switching to a Different Subject?

Part II: Becoming a Functional C++Programmer
Chapter 6: Creating Functions

Writing and Using a Function
Defining our first function

Defining the sumSequence() function

Calling the function sumSequence()

Divide and conquer

Understanding the Details of Functions
Understanding simple functions

Understanding functions with arguments

Overloading Function Names

Defining Function Prototypes

Defaulting Arguments

Passing by Value and Passing by Reference

Variable Storage Types

Chapter 7: Storing Sequences in Arrays
Arraying the Arguments for Arrays

Using an array

Initializing an array

Accessing too far into an array

Arraying range-based for loops

Defining and using arrays of arrays

Using Arrays of Characters
Creating an array of characters

Creating a string of characters

Manipulating Strings with Character

Adding Some Library Functions

Making Room for Wide Strings

Chapter 8: Taking a First Look at C++ Pointers
Variable Size

What’s in an Address?

Address Operators

Using Pointer Variables
Using different types of pointers

Passing Pointers to Functions
Passing by value

Passing pointer values

Passing by reference

Constant const Irritation

Making Use of a Block of Memory Called the Heap
Limited scope

Examining the scope problem

Providing a solution using the heap

Chapter 9: Taking a Second Look at C++ Pointers
Defining Operations on Pointer Variables

Reexamining arrays in light of pointer variables

Applying operators to the address of an array

Expanding pointer operations to a string

Justifying pointer-based string manipulation

Applying operators to pointer types other than char

Contrasting a pointer with an array

When Is a Pointer Not?

Declaring and Using Arrays of Pointers
Utilizing arrays of character strings

Accessing the arguments to main()

Chapter 10: The C++ Preprocessor
What Is a Preprocessor?

Including Files

#Defining Things
Okay, how about not #defining things?

Enumerating other options

Including Things #if I Say So

Intrinsically Defined Objects

Typedef

Part III: Introduction to Classes
Chapter 11: Examining Object-Oriented Programming

Abstracting Microwave Ovens
Preparing functional nachos

Preparing object-oriented nachos

Classifying Microwave Ovens

Why Classify?

Chapter 12: Adding Class to C++

Introducing the Class

The Format of a Class

Accessing the Members of a Class

Activating Our Objects
Simulating real-world objects

Why bother with member functions?

Adding a Member Function

Calling a Member Function
Accessing other members from a member function

Scope Resolution (And I Don’t Mean How Well Your Telescope Works)

Defining a Member Function in the Class

Keeping a Member Function after Class

Overloading Member Functions

Chapter 13: Point and Stare at Objects
Declaring Arrays of Objects

Declaring Pointers to Objects
Dereferencing an object pointer

Pointing toward arrow pointers

Passing Objects to Functions
Calling a function with an object value

Calling a function with an object pointer

Calling a function by using the reference operator

Why Bother with Pointers or References?

Returning to the Heap
Allocating heaps of objects

When memory is allocated for you

Linking Up with Linked Lists
Performing other operations on a linked list

Hooking up with a LinkedListData program

Ray of Hope: A List of Containers Linked to the C++ Library

Chapter 14: Protecting Members: Do Not Disturb
Protecting Members

Why you need protected members

Discovering how protected members work

Making an Argument for Using Protected Members
Protecting the internal state of the class

Using a class with a limited interface

Giving Non-member Functions Access to Protected Members

Chapter 15: “Why Do You Build Me Up, Just toTear Me Down, Baby?”
Creating Objects

Using Constructors
Constructing a single object

Constructing multiple objects

Constructing a duplex

Dissecting a Destructor
Why you need the destructor

Working with destructors

Chapter 16: Making Constructive Arguments
Outfitting Constructors with Arguments

Using a constructor

Placing Too Many Demands on the Carpenter: Overloading the Constructor

Defaulting Default Constructors

Constructing Class Members
Constructing a complex data member

Constructing a constant data member

Reconstructing the Order of Construction
Local objects construct in order

Static objects construct only once

All global objects construct before main()

Global objects construct in no particular order

Members construct in the order in which they are declared

Destructors destruct in the reverse order of the constructors

Constructing Arrays

Constructors as a Form of Conversion

Chapter 17: The Copy/Move Constructor
Copying an Object

Why you need the copy constructor

Using the copy constructor

The Automatic Copy Constructor

Creating Shallow Copies versus Deep Copies

It’s a Long Way to Temporaries
Avoiding temporaries, permanently

The move constructor

Chapter 18: Static Members: Can Fabric Softener Help?
Defining a Static Member

Why you need static members

Using static members

Referencing static data members

Uses for static data members

Declaring Static Member Functions

What Is this About Anyway?

Part IV: Inheritance
Chapter 19: Inheriting a Class

Do I Need My Inheritance?

How Does a Class Inherit?
Using a subclass

Constructing a subclass

Destructing a subclass

Inheriting constructors

Having a HAS_A Relationship

Chapter 20: Examining Virtual Member Functions: Are They for Real?
Why You Need Polymorphism

How Polymorphism Works

When Is a Virtual Function Not?

Considering Virtual Considerations

Chapter 21: Factoring Classes
Factoring

Implementing Abstract Classes
Describing the abstract class concept

Making an honest class out of an abstract class

Passing abstract classes

Part V: Security
Chapter 22: A New Assignment Operator, Should You Decide to Accept It

Comparing Operators with Functions

Comparing Operators with Functions

Inserting a New Operator

Creating Shallow Copies Is a Deep Problem

Overloading the Assignment Operator

Overloading the Subscript Operator

The Move Constructor and Move Operator

Chapter 23: Using Stream I/O
How Stream I/O Works

Default stream objects

Stream Input/Output
Open modes

Hey, file, what state are you in?

Can you show me an example?

Other Methods of the Stream Classes
Reading and writing streams directly

Controlling format

What's up with endl?

Positioning the pointer within a file

Using the stringstream Subclasses

Manipulating Manipulators

Chapter 24: Handling Errors — Exceptions
Justifying a New Error Mechanism?

Examining the Exception Mechanism

What Kinds of Things Can I Throw?

Just Passing Through

Chapter 25: Inheriting Multiple Inheritance
Describing the Multiple Inheritance Mechanism

Straightening Out Inheritance Ambiguities

Adding Virtual Inheritance

Constructing the Objects of Multiple Inheritance

Voicing a Contrary Opinion

Chapter 26: Tempting C++ Templates
Generalizing a Function into a Template

Class Templates

Tips for Using Templates

External Template Instantiations

Implementing an Initializer List

Chapter 27: Standardizing on the Standard Template Library
The string Container

Iterating through Lists
Making your way through a list

Operations on an entire list

Can you show me an example?

Chapter 28: Writing Hacker-Proof Code
Understanding the Hacker's Motives

Understanding Code Injection
Examining an example SQL injection

Avoiding code injection

Overflowing Buffers for Fun and Profit
Can I see an example?

How does a call stack up?

Hacking BufferOverflow

Avoiding buffer overflow — first attempt

Avoiding buffer overflow — second attempt

Another argument for the string class

Why not always use string functions?

Part VI: The Part of Tens
Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program

Enable All Warnings and Error Messages

Adopt a Clear and Consistent Coding Style

Limit the Visibility

Comment Your Code While You Write It

Single-Step Every Path at Least Once

Avoid Overloading Operators

Manage the Heap Systematically

Use Exceptions to Handle Errors

Declare Destructors Virtual

Avoid Multiple Inheritance

Chapter 30: Ten Ways to Protect Your Programs from Hackers
Don't Make Assumptions about User Input

Handle Failures Gracefully

Maintain a Program Log

Follow a Good Development Process

Implement Good Version Control

Authenticate Users Securely

Manage Remote Sessions

Obfuscate Your Code

Sign Your Code With a Digital Certificate

Use Secure Encryption Wherever Necessary

About the Author
Cheat Sheet
More Dummies Products

Introduction
Welcome to C++ For Dummies, 7th Edition. Think of this book as C++: Reader’s Digest
Edition, bringing you everything you need to know to start programming without all the boring
stuff.

About This Book
C++ For Dummies is an introduction to the C++ language. I start from the beginning (where else?)
and work my way from early concepts through more sophisticated techniques. I don’t assume that
you have any prior knowledge (at least, not of programming).

The book is full of examples. Every concept is documented in numerous snippets and several
complete programs.

Unlike other C++ programming books, C++ For Dummies considers the “why” just as important
as the “how.” The features of C++ are like pieces of a jigsaw puzzle. Rather than just present the
features, I think it’s important that you understand how they fit together. You can also use the book
as a reference: If you want to understand what’s going on with all the template stuff, for example,
just flip to Chapter 26. Each chapter contains necessary references to other earlier chapters in case
you don’t read the chapters in sequence.

C++ For Dummies is not operating system–specific. It is just as useful to Macintosh or Linux
programmers as it is to Windows-based developers. The book doesn’t cover Windows or .NET
programming.

You have to master a powerful programming language, like C++, first even if your plan is to
become an accomplished Windows application or .NET programmer. Once you’ve finished C++
For Dummies you will be in position to continue in your area of specialization, whatever it might
be.

In this modern era of hackerdom, learning defensive programming is important, even for beginners,
so I do cover important concepts to keep your program from being hacked.

What is C++?
C++ is an object-oriented, low-level standard programming language. As a low-level language similar to and compatible
with its predecessor C, C++ can generate very efficient, very fast programs. It is often used to write games, graphics
software, hardware control software, and other applications where performance really counts.

As an object-oriented language, C++ has the power and extensibility to write large-scale programs. C++ is one of the
most popular programming languages for all types of programs. Most of the programs you use on your PC every day
are written in C++ (or the subset, which is the C language).

C++ has been certified as a 99.9 percent pure standard, which makes it a portable language. A standard C++ compiler
exists for every major operating system. Some versions support extensions to the basic language — in particular, Visual
Studio and Visual Studio Express from Microsoft includes a C++ compiler that implements several extensions that allow
their programs to interface better with other .NET languages. Nevertheless, any student is better off learning the

standard C++ first. Learning the extensions is easy once you’ve mastered the basics demonstrated here.

When I describe a message that you see onscreen, it appears like this:

 Hi mom!

In addition, code listings appear as follows:

 // some program
int main()
{
 ...
}

If you’re entering these programs by hand, you must enter the text exactly as shown with one
exception: The amount of whitespace (spaces, tabs, and newlines) is not critical. You can’t put a
space in the middle of a keyword, but you don’t have to worry about entering one too many or too
few spaces.

 Case IS critical however. If it says int, it does not mean Int or INT!

C++ words are usually based on English words with similar meanings. This can make reading a
sentence containing both English and C++ difficult without a little assistance. To help out, C++
commands and function names appear in a different font, like this. In addition, function names are
always followed by open and closed parentheses, such as myFavoriteFunction(). The arguments
to the function are left off except when there’s a specific need to make them easier to read.

Sometimes, I’ll tell you to use menu commands, such as File⇒Open. This notation means to use
the keyboard or mouse to open the File menu and then choose the Open option.

Use of gender is always a tricky subject when writing a how-to book. I don’t want to appear to be
telling gentlemen how ignorant they are while giving the ladies a pass by using he and him all the
time. In this book, I use the pronouns she and her when referring to the programmer and he and
him when referring to the user of the program. So, she writes a program that he can use.

Each new feature is introduced by answering the following three questions:

What is this new feature?
Why was it introduced into the language?
How does it work?

Small pieces of code are sprinkled liberally throughout the chapters. Each demonstrates some
newly introduced feature or highlights some brilliant point I’m making. These snippets may not be
complete and certainly don’t do anything meaningful. However, every concept is demonstrated in
at least one functional program that you can execute and play with on your own computer.

A real-world program can take up lots of pages. However, seeing such a program is an important
didactic tool for any reader. I’ve included a series of programs along with an explanation of how
these programs work.

I use one simple example program that I call BUDGET. The program starts life as a simple,
functionally oriented BUDGET1. This program maintains a set of simple checking and savings
accounts. The reader is encouraged to review this program at the end of Part II. The subsequent
version, BUDGET2, adds the object-oriented concepts presented in Part III. The examples work
their way using more and more features of the language, culminating with BUDGET5, which you
should review after you master all the chapters in the book. The BUDGET programs are included
with the book's source code at www.dummies.com/extras/cplusplus.

Icons Used in This Book

 This is technical stuff that you can skip on the first reading.

 Tips highlight a point that can save you a lot of time and effort.

 Remember this. It’s important.

 Remember this, too. This one can sneak up on you when you least expect it and generate
one of those really hard-to-find bugs.

 This icon flags some 2011 additions to the language compared to the predecessor standard
(which is known as C++ 2003). If you already have some familiarity with C++ and something
seems completely new or if something doesn’t work with your existing C++ tools, it may be
because it’s an ’11 addition.

 This icon flags proposed additions of the C++ 2014 standard. These features are not
implemented in the Code::Blocks/gcc that's available as of this writing but they may be
available at www.codeblocks.org by the time you read this.

Beyond the Book
C++ For Dummies includes the following goodies online for easy download:

http://www.dummies.com/extras/cplusplus
http://www.codeblocks.org

A cheat sheet that provides an overview of C++ grammar in one (fairly) easy to read page is
available at www.dummies.com/cheatsheet/cplusplus. Beginners will want to
print this out and keep it handy as they work through the later chapters. Like creeping
socialism, eventually C++ syntax will become second nature and you won't need the cheat
sheet anymore.
The source code for all of the examples in the book can be downloaded from
www.dummies.com/extras/cplusplus. The programs are organized by chapter
number. I have included a project file for Code::Blocks (more about Code::Blocks in the next
bullet, and I explain project files in Chapter 1).
This book uses the free, open source Code::Blocks environment and GCC C++ compiler. The
version of Code::Blocks used in writing this book (Version13.12) is available for download
at www.dummies.com/extras/cplusplus. I have included versions for Windows
(2000 and later) and for Macintosh (10.6 and later). Versions for Linux are available online as
well. Chapter 1 includes instructions for how to download and install Code::Blocks. You can
find newer versions of Code::Blocks and versions for different versions of Linux at
www.codeblocks.org/downloads/binaries.

 If you do go to www.codeblocks.org, be sure to download a version that includes the
gcc compiler.

If you already have a C++ compiler installed on your computer that you would prefer to use, feel
free to do so as long as it is compatible with the C++ standard (most are). Not all compilers have
implemented the 2011 standard yet so I've flagged the '11 extensions in the book. In addition, if
you use a different compiler, your screen may not look exactly like the figures in the book.

 I don't recommend using the Visual Studio or Visual Studio Express packages with this
book. It has many extensions designed to make it compatible with the .NET Framework. Once
you've learned C++ on Code::Blocks, you can learn .NET programming with Visual Studio.

Where to Go from Here
Finding out about a programming language is not a spectator sport. I’ll try to make it as painless as
possible, but you have to power up the ol’ PC and get down to some serious programming. Limber
up the fingers, break the spine on the book so that it lies flat next to the keyboard (and so that you
can’t take it back to the bookstore), and dive in.

If you run into a problem, first check the Frequently Asked Questions (FAQ) at
www.stephendavis.com.

http://www.dummies.com/cheatsheet/cplusplus
http://www.dummies.com/extras/cplusplus
http://www.dummies.com/extras/cplusplus
http://www.codeblocks.org/downloads/binaries
http://www.codeblocks.org
http://www.stephendavis.com

Part I
Getting Started with C++ Programming

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part…
Explaining the building blocks
Declaring variables
Defining mathematical operators
Using logical operators
Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

Chapter 1
Writing Your First C++ Program

In This Chapter
 Finding out about C++
 Installing Code::Blocks on Windows, Ubuntu Linux, or Macintosh OS X
 Creating your first C++ program
 Executing your program

Okay, so here we are: No one here but just you and me. Nothing left to do but get started. Might as
well lay out a few fundamental concepts.

A computer is an amazingly fast but incredibly stupid machine. A computer can do anything you
tell it (within reason), but it does exactly what it’s told — nothing more and nothing less.

Perhaps unfortunately for us, computers don’t understand any reasonable human language — they
don’t speak English either. Okay, I know what you’re going to say: “I’ve seen computers that could
understand English.” What you really saw was a computer executing a program that could
meaningfully understand English.

Computers understand a language variously known as computer language or machine language.
It’s possible but extremely difficult for humans to speak machine language. Therefore, computers
and humans have agreed to sort of meet in the middle, using intermediate languages such as C++.
Humans can speak C++ (sort of), and C++ can be converted into machine language for the
computer to understand.

Grasping C++ Concepts
A C++ program is a text file containing a sequence of C++ commands put together according to the
laws of C++ grammar. This text file is known as the source file (probably because it’s the source
of all frustration). A C++ source file normally carries the extension .CPP just as an Adobe
Acrobat file ends in .PDF or an MS-DOS (remember that?) batch file ends in .BAT.

The point of programming in C++ is to write a sequence of commands that can be converted into a
machine-language program that actually does what we want done. This conversion is called
compiling and is the job of the compiler. The machine code that you wrote must be combined with
some setup and teardown instructions and some standard library routines in a process known as
linking. Together, compiling and linking are known as building. The resulting machine-
executable files carry the extension .EXE in Windows. They don't carry any particular extension
in Linux or Macintosh.

That sounds easy enough — so what’s the big deal? Keep going.

To write a program, you need two specialized computer programs. One (an editor) is what you use
to write your code as you build your .CPP source file. The other (a compiler) converts your
source file into a machine-executable file that carries out your real-world commands (open
spreadsheet, make rude noises, deflect incoming asteroids, whatever).

Nowadays, tool developers generally combine compiler and editor into a single package — a
development environment. After you finish entering the commands that make up your program, you
need only click a button to build the executable file.

Fortunately, there are public-domain C++ environments. I use one of them in this book — the
Code::Blocks environment. This editor will work with a lot of different compilers, but the version
of Code::Blocks combined with the GNU gcc compiler used to write this book is available for
download for Windows, Macintosh, and various versions of Linux, as described in the installation
section of this chapter.

Although Code::Blocks is public domain, you’re encouraged to pay some small fee to support its
further development. You don’t have to pay to use Code::Blocks, but you can contribute to the
cause if you like. See the Code::Blocks website for details.

I have tested the programs in this book with Code::Blocks 13.12 which comes bundled with gcc
version 4.7.1. This version of gcc implements most of the C++ 2011 standard.

 You can use different versions of gcc or even different compilers if you prefer, but they
may not implement the complete '11 standard. For that reason, 2011 extensions are marked
with the '11 icon seen here.

 The gcc compiler does not implement any of the extensions added in the C++ 2014
standard as of this writing, but I have included them, where applicable, because some day it
will.

Okay, I admit it: This book is somewhat Windows-centric. I have tested all of the programs in the
book on Windows 2000/XP/Vista/7/8, Ubuntu Linux, and Macintosh OS X. I flag any differences
between operating systems in the text. In addition, I include installation instructions for each of the
above three operating systems in this chapter. Versions of Code::Blocks and gcc are available for
other flavors of Linux and other versions of the Macintosh OS. The programs should work with
these, as well.

 The Code::Blocks/gcc package generates 32-bit programs, but it does not easily support
creating “windowed” programs. The programs in this book run from a command line prompt
and write out to the command line. As boring as that may sound, I strongly recommend that
you work through the examples in this book first to learn C++ before you tackle windowed

development. C++ and windows programming are two separate things and (for the sake of
your sanity) should remain so in your mind.

Follow the steps in the next section to install Code::Blocks and build your first C++ program. This
program’s task is to convert a temperature value entered by the user from degrees Celsius to
degrees Fahrenheit.

Installing Code::Blocks
The www.dummies.com/extra/cplusplus website includes the most recent version of
the Code::Blocks environment at the time of this writing for Windows, Ubuntu Linux, and
Macintosh OS X 10.6 or later. Follow the installation instructions below that apply to your
operating system.

Windows
The Code::Blocks environment comes in an easy-to-install, compressed executable file that is
compatible with all versions of Windows after Windows 2000. Here’s the rundown on installing
the environment:

1. Download the executable codeblocks-13.12.mingw-setup.exe from
www.dummies.com/extra/cplusplus.

Save the executable to your desktop or some other place that you can easily find it.

 This includes the 4.71 version of the GCC compiler. This is not the newest version of
GCC but it's the version recommended by Code::Blocks. If you want the newer but perhaps
slightly buggy 4.81 version, you can download and install codeblocks-13.12.mingw-
setup-TDM-GCC-481.exe instead. I tested the programs in this book with both versions
but I used 4.71 during its writing.

2. Double-click the program once it has completed downloading.
3. Depending on what version of Windows you’re using, you may get the ubiquitous “An

unidentified program wants access to your computer” warning pop-up. If so, click Allow
to get the installation ball rolling.

4. Click Next after closing all extraneous applications as you are warned in the Welcome
dialog box to the Code::Blocks Setup Wizard.

5. Read the End User License Agreement (commonly known as the EULA) and then click I
Agree if you can live with its provisions.

It’s not like you have much choice — the package really won’t install itself if you don’t accept.
Assuming you do click OK, Code::Blocks opens a dialog box showing the installation options.
The default options are fine.

http://www.dummies.com/extra/cplusplus
http://www.dummies.com/extra/cplusplus

6. Click the Next button.

The installation program allows you to install only some subset of the features. You must
select at least the Default Install and the MinGW Compiler Suite. The default is to install
everything — that's the best choice.

 If the MinGW Compiler Suite is not an option, then you must have downloaded a
version of Code::Blocks that does not include gcc. This version will not work correctly.

7. Click Install and accept the default Destination Folder.

Code::Blocks commences to copying a whole passel of files to your hard drive. Code::Blocks
then asks “Do you want to run Code::Blocks now?”

8. Click Yes to start Code::Blocks.

Code::Blocks now asks which compiler you intend to use. The default is GNU GCC Compiler,
which is the proper selection.

9. From within Code::Blocks, choose Settings⇒Compiler.
10. Select the Compiler Flags tab.
11. Make sure that the following three flags are selected, as shown in Figure 1-1:

Enable All Compiler Warnings
Have g++ Follow the Coming C++0x ISO C++ Language Standard
Have g++ Follow the C++11 ISO C++ Language Standard

The C++ 2011 standard was originally supposed to be the C++ 2008 or 2009 standard. Since
it wasn't clear, the standard became known as the 0x standard. The standard wasn't completely
accepted until 2011. Within gcc, C++0x and C++11 refer to the same standard.

12. Select the Toolchain Executables tab. Make sure that it appears like Figure 1-2.

The default location for the gcc compiler is the MinGW\bin subdirectory of the
Code::Blocks directory.

Figure 1-1: Ensure that the Enable All Compiler Warnings and the C++ 2011 flags are set.

 If the default location is empty, then Code::Blocks does not know where the gcc
compiler is, and it will not be able to build your programs. Make sure that you downloaded a
version of Code::Blocks that includes gcc and that you included MinGW during the
installation. If you are using an existing gcc compiler that you've already installed, then you
will need to point Code::Blocks to where it is located on your hard drive.

13. Close the Settings dialog box.
14. Click Next in the Code::Blocks Setup dialog box and then click Finish to complete the

setup program.

The setup program exits.

Ubuntu Linux
Code::Blocks does not include gcc on Linux, so installation is a two-step process. First you will
need to install gcc. Then you can install Code::Blocks.

Figure 1-2: Ensure that the Compiler's installation directory is correct.

Installing gcc
The gcc compiler is readily available for Linux. Follow these steps to install it:

1. Enter the following commands from a command prompt:

 sudo apt-get update
sudo apt-get upgrade
sudo apt-get install g++

The standard Ubuntu Linux distribution includes a GNU C compiler, but it does not include the
C++ extensions and, in particular, not the C++ 2011 standard extensions. The first two
commands update and upgrade the tools you already have. The third command installs C++.

2. Enter the following command from a command prompt:

 gcc --version

My Ubuntu 13.04 downloaded GNU C++ version 4.7.3. You'll be fine with version 4.7.1 or
later. If you have an earlier version, some of the C++ 2011 features may not work properly,
but otherwise, it should be okay.

 If you are using Debian Linux, the commands are the same. If you’re using Red Hat Linux,
replace the command apt-get with yum so that you end up with

 sudo yum install g++

Installing Code::Blocks

Fortunately for all concerned, an Ubuntu-ready version of Code::Blocks is available in the Ubuntu
Software Center. Many other versions of Linux include something similar to the Software Center.
Follow these steps to install Code::Blocks:

1. Click on the Software Center icon on the Ubuntu desktop.
2. Select Code::Blocks from the list of available software.

This will start the installation process.

Code::Blocks searches your hard drive for your C++ compiler. It should be able to find it
without a problem, but if it doesn’t, then execute the following steps.

3. Start Code::Blocks.
4. Select Settings⇒Compiler.
5. Select the Compiler Flags tab.
6. Make sure that the following three flags are selected, as shown in Figure 1-1:

Enable All Compiler Warnings
Have g++ Follow the Coming C++0x ISO C++ Language Standard
Have g++ Follow the C++11 ISO C++ Language Standard

7. Select the Toolchain Executables tab.
8. Select the “…” button.
9. Navigate to /usr, unless you installed your gcc compiler someplace other than the default

location of /user/bin.
10. The “C compiler” should be gcc, the “C++ compiler” should be g++ and the “Linker for

dynamic libs” should be g++.
11. Select OK to close the dialog box.

Macintosh
The Macintosh version of Code::Blocks relies on the Xcode distribution from Apple for its
compiler. I have divided the installation into three separate parts for this reason.

Installing Xcode
Xcode is a free development package offered by Apple that you will need. Follow these steps to
install it first:

1. Open the Safari browser and go to http://developer.apple.com.
2. Click on Download Xcode to get the most recent version.

This will open the Xcode download dialog box shown in Figure 1-3.

http://developer.apple.com

Figure 1-3: The Xcode download dialog box allows you to install Xcode for free.

3. Click on the Free icon to change it to Install App. Click on it again.
4. Enter your system password (the one you log in with when your Mac boots up).

The icon changes to Installing.

The download and installation takes quite some time, as Xcode is a little over 2GB as of this
writing.

Installing the Command Line Tools
As big as Xcode is, you would think that it has everything you need, but you would be wrong. You
need one more package from Apple to make your joy complete and to get a working gcc compiler
on your Macintosh. Follow these steps to install the Command Line Tools for Xcode:

1. Open the Safari browser and go to http://developer.apple.com/downloads.

You may be asked to sign up for an Apple Developer ID. Go ahead and do so — it's free.

2. Search for Command Line Tools for Xcode. Select the application shown in Figure 1-4.
Click on the Download icon.

3. Double-click on the mpkg package that downloads to install it.
4. Accept all of the default values.

The installation should finish with Installation Was Successful.

Installing Code::Blocks
Now, you can finish your installation by downloading the Code::Blocks editor:

1. Open the Safari browser and go to www.codeblocks.org/downloads.
2. Click on Downloads⇒Binaries.

http://developer.apple.com/downloads
http://www.codeblocks.org/downloads

Figure 1-4: You must install both Xcode and the Command Line Tools for Xcode to get the gcc compiler for
Macintosh.

3. Click on Mac OS X.
4. Select either the BerliOS or Sourceforge.net mirror for the most recent version.

At the time of this writing, CodeBlocks-13.12 -mac.zip was the most recent.

5. Install the downloaded Zip file into the Applications folder.

If you have never installed an application from a third-party site, you may need to execute
these extra steps before you can do so:

a. Click on System Preferences.
b. Click on Security and Privacy.
c. Click the padlock in the lower-left corner of the dialog box to allow changes.
d. Click on Allow Applications Downloaded from: Anywhere, as shown in Figure 1-5.

Once you have completed the installation of Code::Blocks, you may choose to return to
this dialog box and restore the settings to Mac App Store.

Figure 1-5: You will need to allow third-party applications to be installed before you can install Code::Blocks
on your Macintosh.

6. Double-click on the Code::Blocks icon.

The first time you do this, the Mac OS will ask, “Are you sure you want to open it?”

7. Select Don't Warn Me When Opening Applications on This Disk Image and click Open.

Code::Blocks should start and find the gcc compiler installed with the Command Line Tools.

8. Select the gcc compiler, as shown in Figure 1-6. Click on Set as Default and then click on
OK to continue starting Code::Blocks.

Code::Blocks will open with a banner page followed by a menu across the top of the dialog
box.

9. Select Settings⇒Compiler, then click the Have g++ Follow the Coming C++0x ISO C++
Language Standard. Click on OK to close the dialog box.

You are now ready to build your first C++ program.

Figure 1-6: Code::Blocks automatically finds the gcc compiler the first time you execute it.

Creating Your First C++ Program
In this section, you create your first C++ program. You enter the C++ code into a file called
CONVERT.CPP and then convert the C++ code into an executable program.

Creating a project
The first step to creating a C++ program is to create what is known as a project. A project tells
Code::Blocks the names of the .CPP source files to include and what type of program to create.
Most of the programs in the book will consist of a single source file and will be command-line
style:

1. Start up the Code::Blocks tool.
2. From within Code::Blocks, choose File⇒New⇒Project.
3. Select the Console Application icon and then click Go.
4. Select C++ as the language you want to use from the next dialog box. Click Next.

Code::Blocks and gcc also support plain ol’ C programs.

5. In the Folder to Build Project In field, select the “…” icon.
6. Click on Computer and then the C: drive on Windows.

On Linux and Macintosh, you can select the Desktop.

7. Select the Make New Folder button at the lower left of the screen.
8. Name the new folder CPP_Programs_from_Book.

The result should look like Figure 1-7.

Figure 1-7: Put your project in the C:\CPP_Programs_from_Book folder on Windows.

9. In the Project Title field, type the name of the project, in this case Conversion.

The resulting screen is shown in Figure 1-8 on Windows. The Linux and Macintosh version
look the same except for the path.

Figure 1-8: I created the project Conversion for the first program.

10. Click Next.

The next dialog box gives you the option of creating an application for testing or the final
version. The default is fine.

11. Click Finish to create the Conversion project.

Entering the C++ code
The Conversion project that Code::Blocks creates consists of a single, default main.cpp file
that displays the message “Hello, world”. The next step is to enter our program:

1. In the Management dialog box on the left, double-click main.cpp, which is under Sources,
which is under Conversion.

Code::Blocks opens the empty main.cpp program that it created in the code editor, as shown in
Figure 1-9.

Figure 1-9: The Management dialog box displays a directory structure for all available programs.

2. Edit main.cpp with the following program exactly as written.

Don’t worry too much about indentation or spacing — it isn’t critical whether a given line is
indented two or three spaces, or whether there are one or two spaces between two words.
C++ is case sensitive, however, so you need to make sure everything is lowercase.

 You can cheat by using the files at www.dummies.com/extra/cplusplus, as
described in the next section.

 //
// Conversion - Program to convert temperature from
// Celsius degrees into Fahrenheit:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // enter the temperature in Celsius
 int celsius;
 cout << "Enter the temperature in Celsius:";
 cin >> celsius;

 // calculate conversion factor for Celsius

http://www.dummies.com/extra/cplusplus

 // to Fahrenheit
 int factor;
 factor = 212 - 32;

 // use conversion factor to convert Celsius
 // into Fahrenheit values
 int fahrenheit;
 fahrenheit = factor * celsius/100 + 32;

 // output the results (followed by a NewLine)
 cout << "Fahrenheit value is:";
 cout << fahrenheit << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

3. Choose File⇒Save to save the source file.

I know that it may not seem all that exciting, but you’ve just created your first C++ program!

Cheating
All the programs in the book are included online, along with the project files to build them. You
will need to download them and install them onto your hard drive before you can use them by
following this procedure:

 The following instructions are for Windows. The steps to follow for Linux or Macintosh
are very similar.

1. Open your Internet browser.
2. Migrate to www.dummies.com/extras/cplusplus.
3. Click on the CPP_programs link.

A dialog box appears asking you where you want to download the specified file.

4. Click on Save File.

Windows will copy the CPP_programs.zip file to the default download location. This
may be either your Downloads folder or the Desktop.

5. Right-click on the CPP_programs.zip file and select Open.

A dialog box opens containing the single directory CPP_Programs_from_Book.

http://www.dummies.com/extras/cplusplus

6. Copy this folder to the C: drive.

This will copy all of the sources used in the book to the directory
C:\CPP_Programs_from_Book.

 You can put the CPP_Programs_from_Book folder at some other location, but don't put
your source files in a directory that includes a space. On Windows, that means don't put any
of your Code::Blocks folders in My Documents or on the Desktop, as they both include a
space in their paths.

You can use these files in two ways: One way is to go through all the steps I describe in the book
to create the program by hand first, but copy and paste from the provided files into your program if
you get into trouble (or your fingers start cramping). This is the preferred technique.

A second approach is that you can use the sources and project file provided as-is:

1. Double-click AllPrograms.workspace in C:\CPP_Programs_from_Book.

A workspace is a single file that references one or more projects. The
AllPrograms.workspace file contains references to all the projects defined in the book.

2. Right-click the Conversion project in the Management dialog box on the left. Choose
Activate Project from the context-sensitive menu that appears.

Code::Blocks turns the Conversion label bold to verify that this is the program you are
working on right now. When you subsequently select Build, Code::Blocks, it always builds the
active project.

3. Double-click the main.cpp file to open the file in the editor.

The problem with this approach is that you tend to learn very little about C++ if you don't enter the
code yourself.

Building your program
After you’ve saved your C++ source file to your hard drive, it’s time to generate the executable
machine instructions.

To build your Conversion program, you choose Build⇒Build from the menu or press Ctrl-F9.
Almost immediately, Code::Blocks takes off, compiling your program with gusto. If all goes well,
the happy result of 0 Errors, 0 Warnings appears in the lower-right dialog box, as shown in
Figure 1-10.

Code::Blocks generates a message if it finds any type of error in your C++ program — and coding
errors are about as common as ice cubes in Alaska. You’ll undoubtedly encounter numerous
warnings and error messages, probably even when entering the simple Conversion.cpp. To

demonstrate the error-reporting process, change Line 16 from cin >> celsius; to cin >>>
celsius;.

Figure 1-10: Code::Blocks builds the Conversion program quickly.

This seems an innocent enough offense — forgivable to you and me perhaps, but not to C++.
Choose Build⇒Build to start the compile and build process. Code::Blocks almost immediately
places a red square next to the erroneous line. The message in the Build Message tab is a rather
cryptic error: expected primary-expression before '>' token. To get rid of the message, remove
the extra > and recompile.

 You probably consider the error message generated by the example a little mysterious, but
give it time — you’ve been programming for only about 30 minutes now. Over time, you’ll
come to understand the error messages generated by Code::Blocks and gcc much better.

 Code::Blocks was able to point directly at the error this time, but it isn’t always that good.
Sometimes it doesn’t notice the error until the next line or the one after that, so if the line
flagged with the error looks okay, start looking at its predecessor to see if the error is there.

Executing Your Program
It’s now time to execute your new creation … that is, to run your program. You will run the
Conversion program file and give it input to see how well itworks.

To execute the Conversion program on Windows Code::Blocks, choose Build⇒Build and Run, or
press F9. This rebuilds the program if anything has changed and executes the program if the build
is successful.

A dialog box opens immediately, requesting a temperature in Celsius. Enter a known temperature,

such as 100 degrees. After you press Enter, the program returns with the equivalent temperature of
212 degrees Fahrenheit as follows:

 Enter the temperature in Celsius:100
Fahrenheit value is:212
Press Enter to continue…

The message Press Enter to continue … gives you the opportunity to read what you’ve entered
before it goes away. Press Enter, and the dialog box (along with its contents) disappears.
Congratulations! You just entered, built, and executed your first C++ program.

Notice that Code::Blocks is not truly intended for developing windowed programs like those used
in Windows. In theory, you can write a Windows application by using Code::Blocks, but it isn’t
easy. (Building windowed applications is so much easier in Visual Studio.)

Windows programs show the user a visually oriented output, all nicely arranged in onscreen
windows. Conversion.exe is a 32-bit program that executes under Windows, but it’s not a
Windows program in the visual sense.

If you don’t know what 32-bit program means, don’t worry about it. As I said, this book isn’t
about writing Windows programs. The C++ programs you write in this book have a command line
interface executing within an MS-DOS box.

Budding Windows programmers shouldn’t despair — you didn’t waste your money. Learning C++
is a prerequisite to writing Windows programs. I think that they should be mastered separately:
C++ first, Windows second.

Reviewing the Annotated Program
Entering data in someone else’s program is about as exciting as watching someone else drive a
car. You really need to get behind the wheel yourself. Programs are a bit like cars, as well. All
cars are basically the same with small differences and additions — okay, French cars are a lot
different than other cars, but the point is still valid. Cars follow the same basic pattern — steering
wheel in front of you, seat below you, roof above you, and stuff like that.

Similarly, all C++ programs follow a common pattern. This pattern is already present in this very
first program. We can review the Conversion program by looking for the elements that are
common to all programs.

Examining the framework for all C++ programs
Every C++ program you write for this book uses the same basic framework, which looks a lot like
this:

 //
// Template - provides a template to be used as the
// starting point
//

// the following include files define the majority of
// functions that any given program will need
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // your C++ code starts here

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout<< "Press Enter to continue..." <<endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Without going into all the boring details, execution begins with the code contained in the open and
closed braces immediately following the line beginning main().

I’ve copied this code into a file called Template.cpp located in the main
CPP_Programs_from_Book folder.

Clarifying source code with comments
The first few lines in the Conversion program appear to be freeform text. Either this code was
meant for human eyes or C++ is a lot smarter than I give it credit for. These first six lines are
known as comments. Comments are the programmer’s explanation of what she is doing or thinking
when writing a particular code segment. The compiler ignores comments. Programmers (good
programmers, anyway) don’t.

A C++ comment begins with a double slash (//) and ends with a newline. You can put any
character you want in a comment. A comment may be as long as you want, but it’s customary to
keep comment lines to no more than 80 characters across. Back in the old days — “old” is relative
here — screens were limited to 80 characters in width. Some printers still default to 80 characters
across when printing text. These days, keeping a single line to fewer than 80 characters is just a
good practical idea (easier to read; less likely to cause eyestrain; the usual).

A newline was known as a carriage return back in the days of typewriters — when the act of
entering characters into a machine was called typing and not keyboarding. A newline is the
character that terminates a command line.

 C++ allows a second form of comment in which everything appearing after a /* and

before a */ is ignored; however, this form of comment isn’t normally used in C++ anymore.

It may seem odd to have a command in C++ (or any other programming language) that’s
specifically ignored by the computer. However, all computer languages have some version of the
comment. It’s critical that the programmer explain what was going through her mind when she
wrote the code. A programmer’s thoughts may not be obvious to the next colleague who tries to
use or modify her program. In fact, the programmer herself may forget what her program meant if
she looks at it months after writing the original code and has left no clue.

Basing programs on C++ statements
All C++ programs are based on what are known as C++ statements. This section reviews the
statements that make up the program framework used by the Conversion program.

A statement is a single set of commands. Almost all C++ statements other than comments end in a
semicolon. (You see one other exception in Chapter 10.) Program execution begins with the first
C++ statement after the open brace and continues through the listing, one statement at a time.

As you look through the program, you can see that spaces, tabs, and newlines appear throughout
the program. In fact, I place a newline after every statement in this program. These characters are
collectively known as whitespace because you can’t see them on the monitor.

 You may add whitespace anywhere you like in your program to enhance readability —
except in the middle of a word:

 See wha

t I mean?

Although C++ may ignore whitespace, it doesn’t ignore case. In fact, C++ is case sensitive to the
point of obsession. The variable fullspeed and the variable FullSpeed have nothing to do with
each other. The command int is completely understandable, but C++ has no idea what INT means.
See what I mean about fast but stupid compilers?

Writing declarations
The line int celsius; is a declaration statement. A declaration is a statement that defines a
variable. A variable is a “holding tank” for a value of some type. A variable contains a value,
such as a number or a character.

The term variable stems from algebra formulas of the following type:

 x = 10
y = 3 * x

In the second expression, y is set equal to 3 times x, but what is x? The variable x acts as a holding
tank for a value. In this case, the value of x is 10, but we could have just as well set the value of x
to 20 or 30 or –1. The second formula makes sense no matter what the value of x is.

In algebra, you’re allowed but not required to begin with a statement such as x = 10. In C++, the
programmer must define the variable x before she can use it.

In C++, a variable has a type and a name. The variable defined on line 11 is called celsius and
declared to hold an integer. (Why they couldn’t have just said integer instead of int, I’ll never
know. It’s just one of those things you learn to live with.)

The name of a variable has no particular significance to C++. A variable must begin with the
letters A through Z, the letters a through z, or an underscore (_). All subsequent characters must be
a letter, a digit 0 through 9, or an underscore. Variable names can be as long as you want to make
them.

 It’s convention that variable names begin with a lowercase letter. Each new word within a
variable begins with a capital letter, as in myVariable.

 Try to make variable names short but descriptive. Avoid names such as x because x has no
particular meaning. A variable name such as lengthOfLine Segment is much more
descriptive.

Generating output
The lines beginning with cout and cin are known as input/output statements, often contracted to I/O
statements. (Like all engineers, programmers love contractions and acronyms.)

The first I/O statement says “Output the phrase Enter the temperature in Celsius to cout”
(pronounced “see-out”). cout is the name of the standard C++ output device. In this case, the
standard C++ output device is your monitor.

The next line is exactly the opposite. It says, in effect, “Extract a value from the C++ input device
and store it in the integer variable celsius.” The C++ input device is normally the keyboard. What
we have here is the C++ analog to the algebra formula x = 10 just mentioned. For the remainder of
the program, the value of celsius is whatever the user enters there.

Calculating Expressions
All but the most basic programs perform calculations of one type or another. In C++, an
expression is a statement that performs a calculation. Said another way, an expression is a
statement that has a value. An operator is a command that generates a value.

For example, in the Conversion example program — specifically, in the two lines marked as a
calculation expression — the program declares a variable factor and then assigns it the value
resulting from a calculation. This particular command calculates the difference of 212 and 32; the
operator is the minus sign (–), and the expression is 212–32.

Storing the results of an expression

The spoken language can be very ambiguous. The term equals is one of those ambiguities. The
word equals can mean that two things have the same value as in “a dollar equals one hundred
cents.” Equals can also imply assignment, as in math when you say that “y equals 3 times x.”

To avoid ambiguity, C++ programmers call = the assignment operator, which says (in effect),
“Store the results of the expression to the right of the assignment sign in the variable to the
left.” Programmers say that “factor is assigned the value 212 minus 32.” For short, you can say
“factor gets 212 minus 32.”

 Never say “factor is equal to 212 minus 32.” You’ll hear this from some lazy types, but
you and I know better.

Examining the remainder of Conversion
The second expression in the Conversion program presents a slightly more complicated
expression than the first. This expression uses the same mathematical symbols: * for
multiplication, / for division, and + for addition. In this case, however, the calculation is
performed on variables and not simply on constants.

The value contained in the variable called factor (which was calculated as the results of 212 – 32,
by the way) is multiplied by the value contained in celsius (which was input from the keyboard).
The result is divided by 100 and summed with 32. The result of the total expression is assigned to
the integer variable fahrenheit.

The next two commands output the string Fahrenheit value is: to the display, followed by the
value of fahrenheit — and all so fast that the user scarcely knows it’s going on.

The final three statements prompt the user to press Enter and then waits for him to do so. This is
because on some systems the program can display the results and then close the console dialog box
so rapidly you don't even see that anything's happened.

 On many systems, you can skip these three lines — Code::Blocks will keep the dialog box
open until you press Enter anyway — but these lines never hurt.

The final return 0 returns control to the operating system.

Chapter 2
Declaring Variables Constantly

In This Chapter
 Declaring variables
 Declaring different types of variables
 Using floating-point variables
 Declaring and using other variable types

The most fundamental of all concepts in C++ is the variable — a variable is like a small box. You
can store things in the box for later use, particularly numbers. The concept of a variable is
borrowed from mathematics. A statement such as

 x = 1

stores the value 1 in the variable x. From that point forward, the mathematician can use the
variable x in place of the constant 1 — until he changes the value of x to something else.

Variables work the same way in C++. You can make the assignment

 x = 1;

From that point forward in the execution of the program, the value of x is 1 until the program
changes the value to something else. References to x are replaced by the value 1. In this chapter,
you will find out how to declare and initialize variables in C++ programs. You will also see the
different types of variables that C++ defines and when to use each.

Declaring Variables
A mathematician might write something like the following:

 (x + 2) = y / 2
x + 4 = y
solve for x and y

Any reader who’s had algebra realizes right off that the mathematician has introduced the
variables x and y. But C++ isn’t that smart. (Computers may be fast, but they’re stupid.)

You have to announce each variable to C++ before you can use it. You have to say something
soothing like this:

 int x;
x = 10;

int y;
y = 5;

These lines of code declare that a variable x exists, is of type int, and has the value 10; and that a
variable y of type int also exists with the value 5. (The next section discusses variable types.) You
can declare variables (almost) anywhere you want in your program — as long as you declare the
variable before you use it.

Declaring Different Types of Variables
If you’re on friendly terms with math (and who isn’t?), you probably think of a variable in
mathematics as an amorphous box capable of holding whatever you might choose to store in it.
You might easily write something like the following:

 x = 1
x = 2.3
x = "this is a sentence"

Alas, C++ is not that flexible. (On the other hand, C++ can do things that people can’t do, such as
add a billion numbers or so in a second, so let’s not get too uppity.) To C++, there are different
types of variables just as there are different types of storage bins. Some storage bins are so small
that they can handle only a single number. It takes a larger bin to handle a sentence.

 Some computer languages try harder to accommodate the programmer by allowing her to
place different types of data in the same variable. These languages are called weakly typed
languages. C++ is a strongly typed language — it requires the programmer to specifically
declare each variable along with its exact type.

The variable type int is the C++ equivalent of an integer — a number that has no fractional part.
(Integers are also known as counting numbers or whole numbers.)

Integers are great for most calculations. I made it through most of elementary school with integers.
It isn’t until I turned 11 or so that my teachers started mucking up the waters with fractions. The
same is true in C++: More than 90 percent of all variables in C++ are declared to be of type int.

Unfortunately, int variables aren’t adapted to every problem. For example, if you worked through
the temperature-conversion program in Chapter 1, you might have noticed that the program has a
potential problem — it can calculate temperatures to the nearest degree. No fractions of a degree
are allowed. This integer limitation wouldn’t affect daily use because it isn’t likely that someone
(other than a meteorologist) would get all excited about being off a fraction of a degree. There are
plenty of cases, however, where this isn’t the case — for example, you wouldn’t want to come up
a half mile short of the runway on your next airplane trip due to a navigational round-off.

Reviewing the limitations of integers in C++

The int variable type is the C++ version of an integer. int variables suffer the same limitations as
their counting-number integer equivalents in math do.

Integer round-off
Lopping off the fractional part of a number is called truncation. Consider the problem of
calculating the average of three numbers. Given three int variables — nValue1, nValue2, and
nValue3 — an equation for calculating the average is

 int nAverage; int nValue1; int nValue2; int nValue3;
nAverage = (nValue1 + nValue2 + nValue3) / 3;

Because all three values are integers, the sum is assumed to be an integer. Given the values 1, 2,
and 2, the sum is 5. Divide that by 3, and you get 12⁄3, or 1.666. C++ uses slightly different rules:
Given that all three variables nValue1, nValue2, and nValue3 are integers, the sum is also
assumed to be an integer. The result of the division of one integer by another integer is also an
integer. Thus, the resulting value of nAverage is the unreasonable but logical value of 1.

The problem is much worse in the following mathematically equivalent formulation:

 int nAverage; int nValue1; int nValue2; int nValue3;
nAverage = nValue1/3 + nValue2/3 + nValue3/3;

Plugging in the same 1, 2, and 2 values, the resulting value of nAverage is 0 (talk about
unreasonable). To see how this can occur, consider that 1⁄3 truncates to 0, 2⁄3 truncates to 0, and 2⁄3
truncates to 0. The sum of 0, 0, and 0 is 0. You can see that integer truncation can be completely
unacceptable.

Limited range
A second problem with the int variable type is its limited range. A normal int variable can store a
maximum value of 2,147,483,647 and a minimum value of –2,147,483,648 — roughly from
positive 2 billion to negative 2 billion, for a total range of about 4 billion.

 Two billion is a very large number: plenty big enough for most uses. But it’s not large
enough for some applications, including computer technology. In fact, your computer
probably executes faster than 2 gigahertz, depending on how old your computer is. (Giga is
the prefix meaning billion.) A single strand of communications fiber — the kind that’s been
strung back and forth from one end of the country to the other — can handle way more than 2
billion bits per second.

Solving the truncation problem
The limitations of int variables can be unacceptable in some applications. Fortunately, C++
understands decimal numbers that have a fractional part. (Mathematicians also call those real
numbers.) Decimal numbers avoid many of the limitations of int type integers. To C++ all decimal
numbers have a fractional part even if that fractional part is 0. In C++, the number 1.0 is just as
much a decimal number as 1.5. The equivalent integer is written simply as 1. Decimal numbers

can also be negative, such as –2.3.

When you declare variables in C++ that are decimal numbers, you identify them as floating-point
or simply float variables. The term floating-point means the decimal point is allowed to float
back and forth, identifying as many decimal places as necessary to express the value. Floating-
point variables are declared in the same way as int variables:

 float fValue1;

Once declared, you cannot change the type of a variable. fValue1 is now a float and will be a
float for the remainder of the program. To see how floating-point numbers fix the truncation
problem inherent with integers, convert all the int variables to float. Here’s what you get:

 float fValue;
fValue = 1.0/3.0 + 2.0/3.0 + 2.0/3.0;

is equivalent to

 fValue = 0.333... + 0.666... + 0.666...;

which results in the value

 fValue = 1.666...;

 I have written the value 1.6666 … as if the number of trailing 6s goes on forever. This is
not necessarily the case. A float variable has a limit to the number of digits of accuracy that
we'll discuss in the next section.

 A constant that has a decimal point is assumed to be a floating-point value. However, the
default type for a floating-point constant is something known as a double precision, which in
C++ is called simply double, as we’ll see in the next section.

The programs IntAverage and FloatAverage are available from
www.dummies.com/extras/cplusplus in the CPP_Programs_from_Book\Chap02
directory to demonstrate the round-off error inherent in integer variables.

Looking at the limits of floating point numbers
Although floating-point variables can solve many calculation problems, such as truncation, they
have some limitations themselves — the reverse of those associated with integer variables.
Floating-point variables can’t be used to count things, are more difficult for the computer to
handle, and also suffer from round-off error (though not nearly to the same degree as int
variables).

Counting
You cannot use floating-point variables in applications where counting is important. This includes

http://www.dummies.com/extras/cplusplus

C++ constructs that count. C++ can’t verify which whole number value is meant by a given
floating-point number.

For example, it’s clear to you and me that 1.0 is 1 but not so clear to C++. What about 0.9 or 1.1?
Should these also be considered as 1? C++ simply avoids the problem by insisting on using int
values when counting is involved.

Calculation speed
Historically, a computer processor can process integer arithmetic quicker than it can floating-point
arithmetic. Thus, while a processor can add 1 million integer numbers in a given amount of time,
the same processor may be able to perform only 200,000 floating-point calculations during the
same period.

Calculation speed is becoming less of a problem as microprocessors get faster. In addition,
today’s general-purpose microprocessors include special floating-point circuitry on board to
increase the performance of these operations. However, arithmetic on integer values is just a heck
of a lot easier and faster than performing the same operation on floating-point values.

Loss of accuracy
Floating-point float variables have a precision of about 6 digits, and an extra-economy size,
double-strength version of float known as a double can handle about 13 significant digits. This can
cause round-off problems as well.

Consider that 1⁄3 is expressed as 0.333 … in a continuing sequence. The concept of an infinite
series makes sense in math but not to a computer because it has a finite accuracy. The
FloatAverage program outputs 1.66667 as the average 1, 2, and 2 — that’s a lot better than the 0
output by the IntAverage version but not even close to an infinite sequence. C++ can correct for
round-off error in a lot of cases. For example, on output, C++ can sometimes determine that the
user really meant 1 instead of 0.999999. In other cases, even C++ cannot correct for round-off
error.

Not-so-limited range
Although the double data type has a range much larger than that of an integer, it’s still limited. The
maximum value for an int is a skosh more than 2 billion. The maximum value of a double variable
is roughly 10 to the 38th power. That’s 1 followed by 38 zeroes; it eats 2 billion for breakfast.
(It’s even more than the national debt, at least at the time of this writing.)

 Only the first 13 digits or so of a double have any meaning; the remaining 25 digits are
noise having succumbed to floating-point round-off error.

Declaring Variable Types
So far in this chapter, I have been trumpeting that variables must be declared and that they must be
assigned a type. Fortunately (ta-dah!), C++ provides a number of variable types. See Table 2-1 for
a list of variables, their advantages, and limitations.

Table 2-1 Common C++ Variable Types

Variable Defining a
Constant What It Is

int 1 A simple counting number, either positive or negative.

short int --- A potentially smaller version of int. It uses less memory but has a smaller range.

long int 10L A potentially larger version of int. There is no difference between long and int with gcc.

long long
int 10LL A potentially even larger version of int.

float 1.0F A single precision real number. This smaller version takes less memory than a double but has less
accuracy and a smaller range.

double 1.0 A standard floating-point variable.

long
double --- A potentially larger floating-point number. On the PC, long double is used for the native size of the 80x86

floating-point processor, which is 80 bits.

char ‘c’ A single char variable stores a single alphabetic or digital character. Not suitable for arithmetic.

wchar_t L'c' A larger character capable or storing symbols with larger character sets like Chinese.

char
string

“this is a
string” A string of characters forms a sentence or phrase.

bool true The only other value is false. No, I mean, it’s really false. Logically false. Not false as in fake or ersatz or
… never mind.

 The long long int and long double were officially introduced with C++ ’11.

The integer types come in both signed and unsigned versions. Signed is always the default (for
everything except char and wchar_t). The unsigned version is created by adding the keyword
unsigned in front of the type in the declaration. The unsigned constants include a U or u in their
type designation. Thus, the following declares an unsigned int variable and assigns it the value
10:

 unsigned int uVariable;
uVariable = 10U;

The following statement declares the two variables lVariable1 and lVariable2 as type long int
and sets them equal to the value 1, while dVariable is a double set to the value 1.0. Notice in the
declaration of lVariable2 that the int is assumed and can be left off:

 // declare two long int variables and set them to 1
long int lVariable1
long lVariable2; // int is assumed
lVariable1 = lVariable2 = 1;
// declare a variable of type double and set it to 1.0
double dVariable; dVariable = 1.0;

 You can declare a variable and initialize it in the same statement:

 int nVariable = 1; // declare a variable and
 // initialize it to 1

A char variable can hold a single character; a character string (which isn’t really a variable type
but works like one for most purposes) holds a string of characters. Thus, ‘C’ is a char that
contains the character C, whereas “C” is a string with one character in it. A rough analogy is that
a ‘C’ corresponds to a nail in your hand, whereas “C” corresponds to a nail gun with one nail left
in the magazine. (Chapter 9 describes strings in detail.)

 If an application requires a string, you’ve gotta provide one, even if the string contains
only a single character. Providing nothing but the character just won’t do the job.

Types of constants
A constant value is an explicit number or character (such as 1, 0.5, or ‘c’) that doesn’t change. As
with variables, every constant has a type. In an expression such as n = 1; the constant value 1 is an
int. To make 1 a long integer, write the statement as n = 1L;. The analogy is as follows: 1
represents a pickup truck with one ball in it, whereas 1L is a dump truck also with one ball. The
number of balls is the same in both cases, but the capacity of one of the containers is much larger.

Following the int to long comparison, 1.0 represents the value 1 but in a floating-point container.
Notice, however, that the default for floating-point constants is double. Thus, 1.0 is a double
number and not a float.

You can use either uppercase or lowercase letters for your special constants. Thus, 10UL and 10ul
are both unsigned long integers.

The constant values true and false are of type bool. In keeping with C++’s attention to case, true
is a constant but TRUE has no meaning.

A variable can be declared constant when it is created via the keyword const:

 const double PI = 3.14159; // declare a constant variable

A const variable must be initialized with a value when it is declared, and its value cannot be
changed by any future statement.

 Variables declared const don’t have to be named with all capitals, but by convention they
often are. This is just a hint to the reader that this so-called variable is, in fact, not.

I admit that it may seem odd to declare a variable and then say that it can’t change. Why bother?
Largely because carefully named const variables can make a program a lot easier to understand.
Consider the following two equivalent expressions:

 double dC = 6.28318 * dR; // what does this mean?
double dCircumference = TWO_PI * dRadius; // this is a
 // lot easier to understand

It should be a lot clearer to the reader of this code that the second expression is multiplying the
radius of something by 2π to calculate the circumference.

Range of Numeric Types
It may seem odd, but the C++ standard doesn’t say exactly how big a number each of the data types
can accommodate. The standard speaks only to the relative size of each data type. For example, it
says that the maximum long int is at least as large as the maximum int.

The authors of C++ weren’t trying to be mysterious. They merely wanted to allow the compiler to
implement the absolute fastest code possible for the base machine. The standard was designed to
work for all different types of processors running different operating systems.

However, it is useful to know the limits for your particular implementation. Table 2-2 shows the
size of each number type on a Windows PC using the Code::Blocks/gcc compiler.

Attempting to calculate a number that’s beyond the range of its type is known as an overflow. The
C++ standard generally leaves the results of an overflow as undefined. That’s another way that the
definers of C++ remained flexible.

 On the PC, a floating-point overflow results in an exception, which if not handled will
cause your program to crash. (I don’t discuss exceptions until Chapter 24.) As bad as that
sounds, an integer overflow is worse — C++ silently generates an incorrect value without
complaint.

Special characters
You can store any printable character you want in a char or string variable. You can also store a
set of non-printable characters that are used as character constants. See Table 2-3 for a
description of these important non-printable characters.

Table 2-3 Special Characters
Character Constant What It Is

'\n' newline

'\t' tab

'\040' The character whose value is 40 in octal (see Chapter 4 for a discussion of number systems)

'\x20' The character whose value is 20 in hexadecimal (this is the same as '\040')

'\0' null (i.e., the character whose value is 0)

'\\' backslash

C++ collision with filenames
Windows uses the backslash character to separate folder names in the path to a file. (This is a remnant of MS-DOS
that Windows has not been able to shake.) Thus, Root\FolderA\File represents File within FolderA, which is a
subdirectory of Root.

Unfortunately, MS-DOS’s use of the backslash conflicts with the use of the backslash to indicate an escape character in
C++. The character \\ is a backslash in C++. The MS-DOS path Root\FolderA\File is represented in C++ as the string
“Root\\FolderA\\File”.

You have already seen the newline character at the end of strings. This character breaks a string
and puts the parts on separate lines. A newline character may appear anywhere within a string. For
example:

 "This is line 1\nThis is line 2"

appears on the output as

 This is line 1
This is line 2

Similarly, the \t tab character moves output to the next tab position. (This position can vary,
depending on the type of computer you’re using to run the program.)

The numerical forms allow you to specify any non-printing character that you like, but results may
vary. The character represented by 0xFB, for example, depends on the font and the character set
(and may not be a legal character at all).

Because the backslash character is used to signify special characters, a character pair for the
backslash itself is required. The character pair \\ represents the backslash.

Wide Loads on Char Highway
The standard char variable is a scant 1 byte wide and can handle only 255 different characters.
This is plenty enough for European languages but not big enough to handle symbol-based

languages such as kanji.

Several standards have arisen to extend the character set to handle the demands of these languages.
UTF-8 uses a mixture of 8-, 16-, and 32-bit characters to implement almost every kanji or
hieroglyph you can think of but still remain compatible with simple 8-bit ASCII. UTF-16 uses a
mixture of 16- and 32-bit characters to achieve an expanded character set, and UTF-32 uses 32
bits for all characters.

 UTF stands for Unicode Transformation Format, from which it gets the common nickname
Unicode.

 Table 2-4 describes the different character types supported by C++. At first, C++ tried to
get by with a vaguely defined wide character type, wchar_t. This type was intended to be the
wide character type native to the application program’s environment. C++ ’11 introduced
specific types for UTF-16 and UTF-32.

Table 2-4 The C++ Character Types
Variable Example What It Is

char 'c' ASCII or UTF-8 characters

wchar_t L'c' Character in wide format

char_16t u'c' UTF-16 character

char_32t U'c' UTF-32 character

 UTF-16 is the standard encoding for Windows applications. The wchar_t type refers to
UTF-16 in the Code::Blocks/gcc compiler.

Any of the character types in Table 2-4 can be combined into strings as well:

 wchar_t* wideString = L"this is a wide string";

(Ignore the asterisk for now. I have a lot to say about its meaning in Chapter 8.)

Are These Calculations Really Logical?
C++ provides a logical variable called bool. The type bool comes from Boole, the last name of
the inventor of the logical calculus. A Boolean variable has two values: true and false.

 There are actually calculations that result in the value bool. For example, “x is equal to y”

is either true or false.

Mixed Mode Expressions
C++ allows you to mix variable types in a single expression. That is, you are allowed to add an
integer with a double precision floating-point value. In the following expression, for example,
nValue1 is allowed to be an int:

 // in the following expression the value of nValue1
// is converted into a double before performing the
// assignment
int nValue1 = 1;
nValue1 + 1.0;

An expression in which the two operands are not the same type is called a mixed mode
expression. Mixed mode expressions generate a value whose type is equal to the more capable of
the two operands. In this case, nValue1 is converted to a double before the calculation proceeds.
Similarly, an expression of one type may be assigned to a variable of a different type, as in the
following statement:

 // in the following assignment, the whole
// number part of fVariable is stored into nVariable
double dVariable = 1.0;
int nVariable;
nVariable = dVariable;

 You can lose precision or range if the variable on the left side of the assignment is
smaller. In the preceding example, C++ truncates the value of dVariable before storing it in
nVariable.

Converting a larger value type into a smaller value type is called demotion, whereas converting
values in the opposite direction is known as promotion. Programmers say that the value of int
variable nVariable1 is promoted to a double in expressions such as the following:

 int nVariable1 = 1;
double dVariable = nVariable1;

 Mixed mode expressions are not a good idea. Avoid forcing C++ to do your conversions
for you.

Naming conventions

You may have noticed that the name of each of the variables that I create begins with a special character that seems to
have nothing to do with the name. These special characters are not special to C++ at all; they are merely meant to jog
the reader’s memory and indicate the type of the variable. A partial list of these special characters follows. Using this
convention, I can immediately recognize dVariable as a variable of type double, for example.

Character Type
n int

l long

f float

d double

c character

sz string

Religious wars worse than the True Value of BitCoin have broken out over whether or not this naming convention
clarifies C++ code. It helps me, so I stick with it. Try it for awhile. If after a few months, you don’t think it helps, feel free
to change your naming convention.

Automatic Declarations

 If you are really lazy, you can let C++ determine the types of your variables for you.
Consider the following declaration:

 int nVar = 1;

You might ask, “Why can’t C++ figure out the type of nVar?” The answer is, it will if you ask
nicely, as follows:

 auto var1 = 1;
auto var2 = 2.0;

This says, “declare var1 to be a variable of the same type as the constant value 1 (which happens
to be an int) and declare var2 to be the same type as 2.0 (which is a double).”

 I consider the term auto to be a particularly unfortunate choice for this purpose because
prior to C++ ’11, the keyword auto had a completely different meaning. However, auto had
fallen out of use for at least 20 years, so the standards people figured that it would be safe to
usurp the term. Just be aware that if you see the keyword auto in some old code, you will
need to remove it.

 You can also tell C++ that you want a variable to be declared to be of the same type as
another variable, whatever that might be, using the keyword decltype().

 int var1;
decltype(var1) var2; // declare var2 to be of the
 // same type as var1

C++ replaces the decltype(var1) with the type of var1, again an int.

Chapter 3
Performing Mathematical Operations

In This Chapter
 Defining mathematical operators in C++
 Using the C++ mathematical operators
 Identifying expressions
 Increasing clarity with special mathematical operators

C++ offers all the common arithmetic operations: C++ programs can multiply, add, divide, and so
forth. Programs have to be able to perform these operations to get anything done. What good is a
health insurance program if it can’t calculate how much you’re supposed to (over) pay?

C++ operations look like the arithmetic operations you would perform on a piece of paper, except
you have to declare any variables before you can use them (as detailed in Chapter 2):

 int var1;
int var2 = 1;
var1 = 2 * var2;

This code snippet declares two variables, var1 and var2. It initializes var2 to 1 and then stores
the results of multiplying 2 times the value of var2 into var1.

This chapter describes the complete set of C++ mathematical operators.

Performing Simple Binary Arithmetic
A binary operator is one that has two arguments. If you can say var1 op var2, op must be a binary
operator. The most common binary operators are the simple operations you performed in grade
school. The binary operators are flagged in Table 3-1. (This table also includes the unary
operators, which I describe a little later in this chapter.)

Table 3-1 Mathematical Operators in Order of Precedence
Precedence Operator What It Is

1 + (unary) Effectively does nothing

1 - (unary) Returns the negative of its argument

2 ++ (unary) Increment

2 -- (unary) Decrement

3 * (binary) Multiplication

3 / (binary) Division

3 % (binary) Modulo

4 + (binary) Addition

4 - (binary) Subtraction

5 =, *=,%=,+=,-= (special) Assignment types

Multiplication, division, modulus, addition, and subtraction are the operators used to perform
arithmetic. In practice, they work just like the familiar arithmetic operations as well. For example,
using the binary operator for division with a floating point double variable looks like this:

 double var = 133.0 / 10.0;

 The expression 133/10 performs integer division, producing the int result 13 rather than
the floating-point 13.3.

Each of the binary operators has the conventional meaning that you studied in grammar school —
with one exception. You may not have encountered modulus in your studies. The modulus operator
(%) works much like division, except it produces the remainder after division instead of the
quotient. For example, 4 goes into 14 three times with a remainder of 2. Thus we say 14 modulus 4
is 2:

 int var = 14 % 4; // var is set to 2

Modulus is not defined for floating point variables. (I discuss round-off errors in Chapter 2.)

Decomposing Expressions
The most common type of statement in C++ is the expression. An expression is a C++ statement
with a value. Every expression also has a type, such as int, double, or char. A statement involving
any mathematical operator is an expression since all these operators return a value. For example,
1 + 2 is an expression whose value is 3 and type is int. (Remember that a constant without a
decimal point is of type int.)

Expressions can be complex or extremely simple. In fact, the statement 1 is an expression because
it has a value (1) and a type (const int). The following statement has six expressions:

 z = x * y + w;

The expressions are

 x
y
w
x * y
x * y + w

z = x * y + w

Determining the Order of Operations
All operators perform some defined function. In addition, every operator has a precedence — a
specified order in which the expressions are evaluated. Consider, for example, how precedence
affects solving the following problem:

 int var = 2 * 3 + 1;

If the addition is performed before the multiplication, the value of the expression is 2 times 4, or 8.
If the multiplication is performed first, the value is 6 plus 1, or 7.

The precedence of the operators determines who goes first. Table 3-1 shows that multiplication
has higher precedence than addition, so the result is 7. (The concept of precedence is also present
in arithmetic. C++ adheres to the common arithmetic precedence.)

So what happens when two operators of the same precedence appear in the same expression? For
example:

 int var = 8 / 4 / 2;

When operators of the same precedence appear in the same expression, they are evaluated from
left to right (the same rule applied in arithmetic). Thus, in this code snippet, var is equal to 8
divided by 4 (which is 2) divided by 2 (which is 1).

The expression

 x / 100 + 32

divides x by 100 before adding 32. But what if the programmer wanted to divide x by 100 plus
32? The programmer can change the precedence by bundling expressions together in parentheses
(shades of algebra!), as follows:

 x /(100 + 32)

This expression has the same effect as dividing x by 132. The original expression

 x / 100 + 32

is identical to the expression

 (x / 100) + 32

Performing Unary Operations
Arithmetic binary operators — those operators that take two arguments — are familiar to a lot of
us from school days. But consider the unary operators, which take a single argument (for
example, –a). Many unary operations are not so well known.

The unary mathematical operators are plus, minus, plus-plus, and minus-minus (respectively, +, –,
++, and – –). The minus operator changes the sign of its argument. Positive numbers become
negative and vice versa. The plus operator does not change the sign of its argument. The plus
operator is rarely, if ever, used.

 int var1 = 10;
int var2 = -var1; // var2 is now -10

The latter expression uses the minus unary operator (–) to calculate the value negative 10.

The ++ and the – – operators might be new to you. These operators (respectively) add one to their
arguments or subtract one from their arguments, so they’re known (also respectively) as the
increment and decrement operators. Because they’re dependent upon numbers that can be
counted, they’re limited to non-floating point variables. For example, the value of var after
executing the following expression is 11:

 int var = 10; // initalize var
var++; // now increment it
 // value of var is now 11

Why define a separate increment operator?
The authors of C++ noted that programmers add 1 more than any other constant. To provide some convenience, a
special add 1 instruction was added to the language. In addition, most present-day computer processors have an
increment instruction that is faster than the addition instruction. Back when C++ was created — with microprocessors
being what they were — saving a few instructions was a big deal. Today, not so much.

The increment and decrement operators are peculiar in that both come in two flavors: a prefix
version and a postfix version (known as pre-increment and post-increment, respectively).
Consider, for example, the increment operator (the decrement works in the same way).

Suppose that the variable n has the value 5. Both ++n and n++ increment n to the value 6. The
difference between the two is that the value of ++n is the value after incrementing (6) while the
value of n++ is the value before incrementing (5). The following example illustrates this
difference:

 // declare three integer variables
int n1, n2, n3;

n1 = 5;
n2 = ++n1; // the value of both n1 and n2 is now 6

n1 = 5;

n3 = n1++;// the value of n1 is 6 but the value of n3 is 5

Thus n2 is given the value of n1 after n1 has been incremented (using the pre-increment operator),
whereas n3 gets the value of n1 before it is incremented using the post-increment operator.

Using Assignment Operators
An assignment operator is a binary operator that changes the value of its left argument. The equal
sign (=), a simple assignment operator, is an absolute necessity in any programming language.
This operator puts the value of the right-hand argument into the left-hand argument. The other
assignment operators are odd enough that they seem to be someone’s whim.

So what about the following:

 int var1;
int var2 = 2;
var1 = var2 = 1;

If we used the left to right rule, var1 ends up with the value 2 but var2 with the value 1, which is
counterintuitive. To avoid this, multiple assignment operators are evaluated from right to left.
Thus, the example snippet assigns the value 1 to var2 and then copies the same value into var1.

The creators of C (from which C++ originated) noticed that assignments often follow the form of

 variable = variable # constant

where # is some binary operator. Thus, to increment an integer operator by 2, the programmer
might write

 nVariable = nVariable + 2;

This expression says, “Add 2 to the value of nVariable and store the results back into nVariable.”
Doing so changes the value of nVariable to 2 more than it was.

Because the same variable appears on both sides of the = sign, the same Fathers of the C
Revolution decided to create a version of the assignment operator with a binary operator attached.
This says, in effect, “Thou shalt perform whatever operation on a variable and store the results
right back into the same variable.”

Every binary operator has one of these nifty assignment versions. Thus, the assignment just given
could have been written this way:

 nVariable = nVariable + 2;
nVariable += 2;

Here the first line says (being very explicit now), “Take the value of nVariable, add 2, and store
the results back into nVariable.” The next line says (a bit more abruptly), “Add 2 to the value of
nVariable.”

 Other than assignment itself, these assignment operators are not used all that often.
However, as odd as they might look, sometimes they can actually make the resulting program
easier to read

Chapter 4
Performing Logical Operations

In This Chapter
 Using sometimes-illogical logical operators
 Defining logical variables
 Operating with bitwise logical operators logically, a bit at a time

The most common statement in C++ is the expression. Most expressions involve the arithmetic
operators, such as addition (+), subtraction (–) and multiplication (*), as demonstrated in Chapter
3.

This chapter describes a whole other class of operators known as the logical operators. In
comparison with the arithmetic operators, most people don’t think nearly as much about this type
of operation. It isn’t that people don’t deal with logical operations such as AND and OR — we
compute them constantly. I won’t eat cereal unless the bowl contains cereal AND the bowl has
milk in it AND the cereal is coated with sugar (lots of sugar). I’ll have a Scotch IF it’s single-malt
AND someone else is paying for it. People use such logical operations all the time, but they don’t
write them down as machine instructions (or think of them in that light).

Logical operators fall into two types. The AND and OR operators are what I will call simple
logical operators. The second type of logical operator is the bitwise operator. People don’t use
the bitwise operator in their daily business at all; it’s unique to the computer world. We’ll start
with the simple and sneak up on the bitwise in this chapter.

Why Mess with Logical Operations?
C++ programs have to make decisions. A program that can’t make decisions is of limited use. The
temperature-conversion program laid out in Chapter 1 is about as complex as you can get without
some type of decision-making. Invariably a computer program gets to the point where it has to
figure out situations such as “Do this if the a variable is less than some value; do that other thing if
it’s not.” The ability to make decisions is what makes a computer appear to be intelligent. (By the
same token, that same property makes a computer look really stupid when the program makes the
wrong decision.) Making decisions, right or wrong, requires the use of logical operators.

Using the Simple Logical Operators
The simple logical operators, shown in Table 4-1, evaluate to true or false.

Table 4-1 Simple Operators Representing Daily Logic

Operator What It Does

== Equality; true if the left-hand argument has the same value as the right

!= Inequality; opposite of equality

>, < Greater than, less than; true if the left-hand argument is greater than or less than the right-hand argument

>=, <= Greater than or equal to, less than or equal to; true if either > or == is true, or either < or == is true

&& AND; true if both the left- and right-hand arguments are true

|| OR; true if either the left- or right-hand argument is true

! NOT; true if its argument is false; otherwise, false

The first six entries in Table 4-1 are comparison operators. The equality operator is used to
compare two numbers. For example, the following is true if the value of n is 0, and is false
otherwise:

 n == 0;

 Looks can be deceiving. Don’t confuse the equality operator (==) with the assignment
operator (=). Not only is this a common mistake, but it’s a mistake that the C++ compiler
generally cannot catch — that makes it more than twice as bad. The following statement does
not initialize n to 0; it compares the current value of n with 0 and then does nothing with the
results of that comparison:

 n == 0; // programmer meant to say n = 0

The greater-than (>) and less-than (<) operators are similarly common in everyday life. The
following logical comparison is true:

 int n1 = 1;
int n2 = 2;
n1 < n2;

The greater-than-or-equal-to operator (>=) and the less-than-or-equal-to operator (<=) are similar
to the less-than and greater-than operators, with one major exception. They include equality; the
other operators don’t.

The && (AND) and || (OR) work in combination with the other logic operators to build more
complex logical expressions, like this:

 // the following is true if n2 is greater than n1
// AND n2 is smaller than n3
// (this is the most common way determining that n2 is in
// the range of n1 to n3, exclusive)
(n1 < n2) && (n2 < n3);

Storing logical values

The result of a logical operation can be assigned to a variable of type bool. The term bool refers
to Boolean algebra, which is the algebra of logic. This was invented by a British mathematician,
George Boole, in the 19th century.

 int n1 = 1;
int n2 = 2;
bool b;
b = (n1 == n2);

This expression highlights the difference between the assignment operator = and the comparison
operator ==. The expression says, “Compare the variables n1 and n2. Store the results of this
comparison in the variable b.”

The following BoolTest program demonstrates the use of a bool variable:

 // BoolTest - compare variables input from the
// keyboard and store the results off
// into a logical variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // set output format for bool variables
 // to true and false instead
 // of 1 and 0
 cout.setf(cout.boolalpha);

 // input two values
 int nArg1;
 cout << "Input value 1: ";
 cin >> nArg1;

 int nArg2;
 cout << "Input value 2: ";
 cin >> nArg2;

 // compare the two variables and store the results
 bool b;
 b = nArg1 == nArg2;

 cout << "The statement, " << nArg1
 << " equals " << nArg2

 << " is " << b
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The first line cout.setf() makes sure that our bool variable b is output as “true” or “false”. The
next section explains why this is necessary.

The program inputs two values from the keyboard and displays the result of the equality
comparison:

 Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is true
Press Enter to continue...

 The special value endl inserts a newline. The difference between the value endl and the
character ‘\n’ as described in Chapter 2 is subtle and explained in Chapter 23.

Using logical int variables
C++ hasn’t always had a bool type variable. Back in the old days (when cameras still used actual
film), C++ used int variables to store logical values. A value of 0 was considered false and all
other values true. By the same token, a logical operator generated a 0 for false and a 1 for true.
(Thus, 10 < 5 returned 0 while 10 > 5 returned 1.)

C++ retains a high degree of compatibility between bool and int to support the older programs.
You get completely different output from the BitTest program if you remove the line
cout.setf(cout.boolalpha):

 Input value 1: 5
Input value 2: 5
The statement, 5 equals 5 is 1
Press Enter to continue...

Variables of type int and bool can be mixed in expressions as well. For example, C++ allows the
following bizarre statement without batting an eyelid:

 int n;
n = (nArg1 == nArg2) * 5;

This sets n to 5 if nArg1 and nArg2 are equal and 0 otherwise.

Be careful performing logical operations on floating-point
variables
Round-off errors in floating-point computation can create havoc with logical operations. Consider
the following example:

 float f1 = 10.0;
float f2 = f1 / 3;
bool b1 = (f1 == (f2 * 3.0)); // are these two equal?

Even though it’s obvious to us that f1 is equal to f2 times 3, the resulting value of b1 is not
necessarily true. A floating-point variable cannot hold an unlimited number of significant digits.
Thus, f2 is not equal to the number we’d call “three-and-a-third,” but rather to 3.3333 …, stopping
after some number of decimal places.

 A float variable supports about 7 digits of accuracy while a double supports a skosh over
16 digits. I say “about” and “skosh” because the computer is likely to generate a number like
3.3333347 due to vagaries in floating-point calculations.

Now, in pure math, the number of 3s after the decimal point is infinite, but no computer built can
handle an infinite number of digits. So, after multiplying 3.3333 by 3, you get 9.9999 instead of the
10 you’d get if you multiplied “three-and-a-third” — in effect, a round-off error. Such small
differences may be unnoticeable to a person but not to the computer. Equality means exactly that
— exact equality.

Modern processors are sophisticated in performing such calculations. The processor may, in fact,
accommodate the round-off error, but from inside C++, you can’t predict exactly what any given
processor will do.

The safer comparison follows:

 float f1 = 10.0;
float f2 = f1 / 3;
float f3 = f2 * 3.0;
float delta = f1 - f3;
bool bEqual = -0.0001 < delta && delta < 0.0001;

This comparison is true if f1 and f3 are within some small delta from each other, which should
still be true even if you take some small round-off error into account.

Short circuits and C++
The logical AND && and logical OR || operators perform what is called short-circuit evaluation.
Consider the following:

 condition1 && condition2

If condition1 is not true, the overall result is not true, no matter what the value of condition2.
(For example, condition2 could be true or false without changing the result.) The same situation
occurs in the following:

 condition1 || condition2

If condition1 is true, the result is true, no matter what the value of condition2 is.

To save time, C++ doesn’t evaluate condition2 if it doesn’t need to. For example, in the
expression condition1 && condition2, C++ doesn’t evaluate condition2 if condition1 is false.
Likewise, in the expression condition1 || condition2, C++ doesn’t evaluate condition2 if
condition1 is true. This is known as short-circuit evaluation.

 Short-circuit evaluation may mean that condition2 is not evaluated even if that condition
has side effects. Consider the following admittedly contrived code snippet:

 int nArg1 = 1;
int nArg2 = 2;
int nArg3 = 3;

bool b = (nArg1 > nArg2) && (nArg2++ > nArg3);

The variable nArg2 is never incremented because the comparison nArg2++ > nArg3 is not
performed. There’s no need because nArg1 > nArg2 already returned a false so the overall
expression must be false.

Expressing Binary Numbers
C++ variables are stored internally as so-called binary numbers. Binary numbers are stored as a
sequence of 1 and 0 values known as bits. Most of the time, you don’t really need to deal with
which particular bits you use to represent numbers. Sometimes, however, it’s practical and
convenient to tinker with numbers at the bit level — so C++ provides a set of operators for that
purpose.

 Fortunately, you won’t have to deal too often with C++ variables at the bit level, so it’s
pretty safe to consider the remainder of this chapter a Deep Techie excursion.

The so-called bitwise logical operators operate on their arguments at the bit level. To understand
how they work, let’s first examine how computers store variables.

The decimal number system
The numbers we’ve been familiar with from the time we could first count on our fingers are known
as decimal numbers because they’re based on the number 10. (If beer by the six-pack had been

invented early enough, our number system might well be based on the number 6.) In general, the
programmer expresses C++ variables as decimal numbers. Thus you could specify the value of
var as (say) 123, but consider the implications.

A number such as 123 refers to 1 * 100 + 2 * 10 + 3 * 1. All of these base numbers — 100, 10,
and 1 — are powers of 10.

 123 = 1 * 100 + 2 * 10 + 3 * 1

Expressed in a slightly different (but equivalent) way, 123 looks like this:

 123 = 1 * 102 + 2 * 101 + 3 * 100

Remember that any number to the zero power is 1.

Other number systems
Well, okay, using 10 as the basis (or base) of our counting system probably stems from those 10
human fingers, the original counting tools. An alternative base for a counting system could just as
easily have been 20 (maybe the inventor of base 10 had shoes on at the time).

If our numbering scheme had been invented by dogs, it might well be based on 8 (one digit of each
paw is out of sight on the back part of the leg). Mathematically, such an octal system would have
worked just as well:

 12310 = 1 * 8
2 + 7 * 81 + 3 * 80 = 1738

The small 10 and 8 here refer to the numbering system, 10 for decimal (base 10) and 8 for octal
(base 8). A counting system may use any positive base.

The binary number system
Computers have essentially two fingers. (Maybe that’s why computers are so stupid: without an
opposing thumb, they can’t grasp anything. And then again, maybe not.) Computers prefer counting
using base 2. The number 12310 would be expressed this way:

 12310 = 0*2
7 + 1*26 + 1*25 + 1*24 + 1*23 + 0*22 + 1*21 + 1*20

12310 = 0*128 + 1*64 + 1*32 + 1*16 + 1*8 + 0*4 + 1*2 + 1*1
 = 011110112

Computer convention expresses binary numbers by using 4, 8, 16, 32, or even 64 binary digits,
even if the leading digits are 0. This is also because of the way computers are built internally.

Because the term digit refers to a multiple of 10, a binary digit is called a bit (an abbreviation of
binary digit). A byte is made up of 8 bits. (Calling a binary digit a byte-it didn’t seem like a good
idea.) Memory is usually measured in bytes (like rolls are measured in units of baker's dozen).

With such a small base, you have to use a large number of bits to express numbers. Human beings
don’t want the hassle of using an expression such as 011110112 to express such a mundane value
as 12310. Programmers prefer to express numbers by using an even number of bits. The octal

system — which is based on 3 bits — was the default binary system in the early days of C. We see
a vestige of this even today — a constant that begins with a 0 is assumed to be octal in C++. Thus,
the line:

 cout << "0173 = " << 0173 << endl;

produces the following output:

 0173 = 123

However, octal has been almost completely replaced by the hexadecimal system, which is based
on 4-bit digits.

Hexadecimal uses the same digits for the numbers 0 through 9. For the digits between 9 and 16,
hexadecimal uses the first six letters of the alphabet: A for 10, B for 11, and so on. Thus, 12310
becomes 7B16, like this:

 123 = 7 * 161 + B (i.e. 11) * 160 = 7B16

Programmers prefer to express hexadecimal numbers in multiples of 4 hexadecimal digits even
when the leading digit in each case is 0.

Finally, who wants to express a hexadecimal number such as 7B16 by using a subscript? Terminals
don’t even support subscripts. Even on a word processor such as the one I’m using now, it’s a
drag to change fonts to and from subscript mode just to type two lousy digits. Therefore,
programmers (no fools, they) use the convention of beginning a hexadecimal number with a 0x.
(Why? Well, the reason for such a strange convention goes back to the early days of C, in a galaxy
far, far, away … never mind.) Thus, 7B becomes 0x7B. Using this convention, the hexadecimal
number 0x7B is equal to 123 decimal while 0x123 hexadecimal is equal to 291 decimal. The code
snippet

 cout << "0x7B = " << 0x7B << endl;
cout << "0x123 = " << 0x123 << endl;

produces the following output:

 0x7B = 123
0x123 = 291

You can use all the mathematical operators on hexadecimal numbers in the same way you’d apply
them to decimal numbers. (Well, okay, most of us can’t perform a multiplication such as 0xC *
0xE in our heads, but that has more to do with the multiplication tables we learned in school than it
has to do with any limitation in the number system.)

 If you really want to, you can write binary numbers in C++ '14 using the prefix ‘0b'. Thus,
123 becomes 0b01111011.

Performing Bitwise Logical Operations
All C++ numbers can be expressed in binary form. Binary numbers use only the digits 1 and 0 to
represent a value. Table 4-2 defines the set of operations that work on numbers one bit at a time,
hence the term bitwise operators.

Table 4-2 Bitwise Operators
Operator Function

~ NOT: toggle each bit from 1 to 0 and from 0 to 1

& AND each bit of the left-hand argument with that on the right

| OR each bit of the left-hand argument with that on the right

^ XOR (exclusive OR) each bit of the left-hand argument with that on the right

Bitwise operations can potentially store a lot of information in a small amount of memory. Many
traits in the world have only two possibilities — that are either this way or that way. You are
either married or you’re not. You are either male or female (at least that’s what my driver’s
license says). In C++, you can store each of these traits in a single bit — in this way, you can pack
32 separate binary properties into a single 32-bit int.

In addition, bit operations can be extremely fast. No performance penalty is paid for that 32-to-1
savings.

 Even though memory is cheap these days, it’s not unlimited. Sometimes, when you’re
storing large amounts of data, this ability to pack a whole lot of properties into a single word
is a big advantage.

The single-bit operators
The bitwise operators — AND (&), OR (|) and NOT (~) — perform logic operations on single
bits. If you consider 0 to be false and 1 to be true (it doesn’t have to be this way, but it’s a
common convention), you can say things like the following for the NOT operator:

 ~ 1 (true) is 0 (false)
~ 0 (false) is 1 (true)

The AND operator is defined as following:

 1 (true) & 1 (true) is 1 (true)
1 (true) & 0 (false) is 0 (false)

It’s a similar situation for the OR operator:

 1 (true) | 0 (false) is 1 (true)
0 (false) | 0 (false) is 0 (false)

The definition of the AND operator appears in Table 4-3. Read one argument as the column head
and the other argument as the row head — the result is the intersection. Thus, 1 AND 1 is 1. 0
AND 1 is 0.

Table 4-3 Truth Table for the AND Operator
AND 1 0

1 1 0

0 0 0

You read Table 4-3 as the column corresponding to the value of one of the arguments while the
row corresponds to the other. Thus, 1 & 0 is 0. (Column 1 and row 0.) The only combination that
returns anything other than 0 is 1 & 1. (This is known as a truth table.)

Similarly, the truth table for the OR operator is shown in Table 4-4.

Table 4-4 Truth Table for the OR Operator
OR 1 0

1 1 1

0 1 0

One other logical operation that is not so commonly used in day-to-day living is the OR ELSE
operator, commonly contracted to XOR. XOR is true if either argument is true but not if both are
true. The truth table for XOR is shown in Table 4-5.

Table 4-5 Truth Table for the XOR Operator
XOR 1 0

1 0 1

0 1 0

Armed with these single-bit operators, we can take on the C++ bitwise logical operations.

Using the bitwise operators
The bitwise operators are used much like any other binary arithmetic operator. The NOT operator
is the easiest to understand. To NOT a number is to NOT each bit that makes up that number (and
to a programmer, that sentence makes perfect sense — honest). Consider this example:

 ~01102 (0x6)
 10012 (0x9)

Thus we say that ~0x6 equals 0x9 (pronounced “NOT 6 equals 9”).

The following calculation demonstrates the & operator:

 01102
&
 00112
 00102

Beginning with the most significant bit, 0 AND 0 is 0. In the next bit, 1 AND 0 is 0. In bit 3, 1
AND 1 is 1. In the least significant bit, 0 AND 1 is 0. Expressed in hexadecimal, the same
expression appears as follows:

 0x6 01102
 & &
 0x3 00112
 0x2 00102

In shorthand, we say that 0x6 & 0x3 equals 0x2 (pronounced “6 AND 3 equals 2”).

A simple test
The following program illustrates the bitwise operators in action. The program initializes two
variables and outputs the result of ANDing, ORing, and XORing them:

 // BitTest - initialize two variables and output the
// results of applying the ~,& , | and ^
// operations
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // set output format to hexadecimal
 cout.unsetf(cout.dec);
 cout.setf(cout.hex);

 // initialize two arguments
 int nArg1 = 0x78ABCDEF;
 int nArg2 = 0x12345678;

 // now perform each operation in turn
 // first the unary NOT operator
 cout << " nArg1 = 0x" << nArg1 << endl;
 cout << "~nArg1 = 0x" << ~nArg1 << "\n" << endl;
 cout << " nArg2 = 0x" << nArg2 << endl;
 cout << "~nArg2 = 0x" << ~nArg2 << "\n" << endl;

 // now the binary operators
 cout << " 0x" << nArg1 << "\n"
 << "& 0x" << nArg2 << "\n"
 << " ----------" << "\n"
 << " 0x" << (nArg1 & nArg2) << "\n"
 << endl;

 cout << " 0x" << nArg1 << "\n"
 << "| 0x" << nArg2 << "\n"
 << " ----------" << "\n"
 << " 0x" << (nArg1 | nArg2) << "\n"
 << endl;

 cout << " 0x" << nArg1 << "\n"
 << "^ 0x" << nArg2 << "\n"
 << " ----------" << "\n"
 << " 0x" << (nArg1 ^ nArg2) << "\n"
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The first two expressions in our program, cout.unsetf(ios::dec) and cout.setf(ios::hex), changes
the default output format from decimal to hexadecimal. (You’ll have to trust me until Chapter 23
that it works.)

The remainder of the program is straightforward. The program assigns nArg1 the test value
0x78ABCDEF and nArg2 the value 0x12345678. The program then outputs all combinations of
bitwise calculations. The extra newlines, such as in the following line, cause a blank line to
appear to help group the output to make it easier to read:

 cout << "~nArg1 = 0x" << ~nArg1 << "\n" << endl;

The output appears as follows:

 nArg1 = 0x78abcdef
~nArg1 = 0x87543210

nArg2 = 0x12345678

~nArg2 = 0xedcba987

 0x78abcdef
& 0x12345678

 0x10204468

 0x78abcdef
0x12345678
 0x7abfdfff

 0x78abcdef
^ 0x12345678

 0x6a9f9b97

Press Enter to continue...

You can convert each of the digits into binary to check the bitwise arithmetic. For example, from
the first digit of each of the examples, you can see that 7 & 1 equals 1, 7 | 1 equals 7, and 7 ^ 1
equals 6.

Running through simple and bitwise logical calculations in your head at parties is fun (well, okay,
for some of us), but a program has to make actual, practical use of these values to make them
worth the trouble. Coming right up: Chapter 5 demonstrates how logical calculations are used to
control program flow.

Chapter 5
Controlling Program Flow

In This Chapter
 Controlling the flow through the program
 Executing a group of statements repetitively
 Avoiding infinite loops

The simple programs that appear in Chapters 1 through 4 process a fixed number of inputs, output
the result of that calculation, and quit. However, these programs lack any form of flow control.
They cannot make tests of any sort. Computer programs are all about making decisions. If the user
presses a key, the computer responds to the command.

For example, if the user presses Ctrl+C, the computer copies the currently selected area to the
Clipboard. If the user moves the mouse, the pointer moves on the screen. If the user clicks the right
mouse button with the Windows key depressed, the computer crashes. The list goes on and on.
Programs that don’t make decisions are necessarily pretty boring.

Flow-control commands allow the program to decide what action to take based on the results of
the C++ logical operations performed (see Chapter 4). There are basically three types of flow-
control statements: the branch, the loop, and the switch.

Controlling Program Flow with the Branch
Commands

The simplest form of flow control is the branch statement. This instruction allows the program to
decide which of two paths to take through C++ instructions, based on the results of a logical
expression (see Chapter 4 for a description of logical expressions).

In C++, the branch statement is implemented using the if statement:

 if (m > n)
{
 // Path 1
 // ...instructions to be executed if
 // m is greater than n
}
else
{
 // Path 2

 // ...instructions to be executed if not
}

First, the logical expression m > n is evaluated. If the result of the expression is true, control
passes down the path marked Path 1 in the previous snippet. If the expression is false, control
passes to Path 2. The else clause is optional. If it is not present, C++ acts as if it is present but
empty.

 Actually, the braces are not required if there’s only one statement to execute as part of the
if. Originally, braces were only used if there were two or more statements that you wanted to
treat as one. However, people quickly realized that it was cleaner and less error prone if you
used braces every time, no matter how many statements there are.

The following program demonstrates the if statement (note all the lovely braces):

 // BranchDemo - input two numbers. Go down one path of the
// program if the first argument is greater
// than the first or the other path if not
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the first argument...
 int nArg1;
 cout << "Enter arg1: ";
 cin >> nArg1;

 // ...and the second
 int nArg2;
 cout << "Enter arg2: ";
 cin >> nArg2;

 // now decide what to do:
 if (nArg1 > nArg2)
 {
 cout<< "Argument 1 is greater than argument 2"
 << endl;
 }
 else
 {

 cout<< "Argument 1 is not greater than argument 2"
 << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here the program reads two integers from the keyboard and compares them. If nArg1 is greater
than nArg2, control flows to the output statement cout << “Argument 1 is greater than argument
2”. If nArg1 is not greater than nArg2, control flows to the else clause where the statement cout
<< “Argument 1 is not greater than argument 2\n” is executed. Here’s what that operation looks
like:

 Enter arg1: 5
Enter arg2: 6
Argument 1 is not greater than argument 2
Press Enter to continue...

 Notice how the instructions within the if blocks are indented slightly. This is strictly for
human consumption because C++ ignores whitespace (spaces, tabs, and newlines). It may
seem trivial, but a clear coding style increases the readability of your C++ program. The
Code::Blocks editor can enforce this style or any one of several other coding styles for you.
Select Settings⇒Editor, then click on the Source Formatter selection from the scrolled list on
the left. I use the ANSI bracket style with four spaces per indent.

Executing Loops in a Program
Branch statements allow you to direct the flow of a program’s execution down one path or
another. This is a big improvement but still not enough to write full-strength programs.

Consider the problem of updating the computer display. The typical PC must update well over a
thousand pixels for each row as it paints an image from left to right. It repeats this process for each
of the thousand or so rows on the display. It does this by executing the same small number of
instructions, millions of times — once for each pixel.

Looping while a condition is true
The simplest form of looping statement is the while loop. Here’s what the while loop looks like:

 while(condition)
{
 // ...repeatedly executed as long as condition is true
}

The condition is tested. This condition could be if var > 10 or if var1 == var2 or any other
expression you might think of as long as it returns a value of true or false. If the condition is true,
the statements within the braces are executed. Upon encountering the closed brace, C++ returns
control to the beginning, and the process starts over. If the condition is false, control passes to the
first statement after the closed brace. The effect is that the C++ code within the braces is executed
repeatedly as long as the condition is true. (Kind of reminds me of how I get to walk around the
yard with my dog until she … well, until we’re done.)

If the condition were true the first time, what would make it be false in the future? Consider the
following example program:

 // WhileDemo - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // now loop that many times
 while (nLoopCount > 0)
 {
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;

}

WhileDemo begins by retrieving a loop count from the user, which it stores in the variable
nLoopCount. The program then executes a while loop. The while first tests nLoopCount. If
nLoopCount is greater than 0, the program enters the body of the loop (the body is the code
between the braces), where it decrements nLoopCount by 1 and outputs the result to the display.
The program then returns to the top of the loop to test whether nLoopCount is still positive.

When executed, the program WhileDemo outputs the results shown in this next snippet. Here I
entered a loop count of 5. The result is that the program loops five times, each time outputting a
countdown:

 Enter loop count: 5
Only 4 loops to go
Only 3 loops to go
Only 2 loops to go
Only 1 loops to go
Only 0 loops to go
Press Enter to continue...

If the user enters a negative loop count, the program skips the loop entirely. That’s because the
specified condition is never true, so control never enters the loop. In addition, if the user enters a
very large number, the program loops for a long time before completing.

A separate, less frequently used version of the while loop known as the do … while appears
identical except the condition isn’t tested until the bottom of the loop:

 do
{
 // ...the inside of the loop
} while (condition);

Because the condition isn’t tested until the end, the body of the do … while is always executed at
least once.

 The condition is checked only at the beginning of the while loop or at the end of the do …
while loop. Even if the condition ceases to be true at some time during the execution of the
loop, control does not exit the loop until the condition is retested.

Using the autoincrement/autodecrement feature
Programmers very often use the autoincrement ++ or the autodecrement – – operators with loops
that count something. Notice from the following snippet extracted from the WhileDemo example
that the program decrements the loop count by using assignment and subtraction statements, like
this:

 // now loop that many times

while (nLoopCount > 0)
{
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

A more compact version uses the autodecrement feature, which does what you may well imagine:

 while (nLoopCount > 0)
{
 nLoopCount--;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

The logic in this version is the same as in the original. The only difference is the way that
nLoopCount is decremented.

Because the autodecrement both decrements its argument and returns its value, the decrement
operation can be combined with the while loop. In particular, the following version is the smallest
loop yet:

 while (nLoopCount-- > 0)
 {
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

Believe it or not, nLoopcount-- > 0 is the version that most C++ programmers would use. It’s not
that C++ programmers like being cute (although they do). In fact, the more compact version (which
embeds the autoincrement or autodecrement feature in the logical comparison) is easier to read,
especially as you gain experience.

 Both nLoopCount-- and --nLoopCount expressions decrement nLoopCount. The former
expression, however, returns the value of nLoopCount before being decremented; the latter
expression does so after being decremented.

How often should the autodecrement version of WhileDemo execute when the user enters a loop
count of 1? If you use the pre-decrement version, the value of --nLoopCount is 0, and the body of
the loop is never entered. With the post-decrement version, the value of nLoopCount is 1, and
control enters the loop.

Beware thinking that the version of the program with the autodecrement command executes faster
than the simple “- 1” version (since it contains fewer statements). It probably executes exactly the
same. Modern compilers are good at getting the number of machine-language instructions down to

a minimum, no matter which of the decrement instructions shown here you actually use.

Using the for loop
The most common form of loop is the for loop. The for loop is preferred over the more basic
while loop because it’s generally easier to read (there’s really no other advantage).

The for loop has the following format:

 for (initialization; conditional; increment)
{
 // ...body of the loop
}

The for loop is equivalent to the following while loop:

 {
 initialization;
 while(conditional)
 {
 {
 // ...body of the loop
 }
 increment;
 }
}

Execution of the for loop begins with the initialization clause, which got its name because it’s
normally where counting variables are initialized. The initialization clause is executed only once,
when the for loop is first encountered.

Execution continues with the conditional clause. This clause works just like the while loop: As
long as the conditional clause is true, the for loop continues to execute.

After the code in the body of the loop finishes executing, control passes to the increment clause
before returning to check the conditional clause — thereby repeating the process. The increment
clause normally houses the autoincrement or autodecrement statements used to update the counting
variables.

The for loop is best understood by example. The following ForDemo1 program is nothing more
than the WhileDemo converted to use the for loop construct:

 // ForDemo1 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // count up to the loop count limit
 for (; nLoopCount > 0;)
 {
 nLoopCount = nLoopCount - 1;
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program reads a value from the keyboard into the variable nloopCount. The for starts out
comparing nloopCount to 0. Control passes into the for loop if nloopCount is greater than 0. Once
inside the for loop, the program decrements nloopCount and displays the result. That done, the
program returns to the for loop control. Control skips to the next line after the for loop as soon as
nloopCount has been decremented to 0.

 All three sections of a for loop may be empty. An empty initialization or increment section
does nothing. An empty comparison section is treated like a comparison that returns true.

This for loop has two small problems. First, it’s destructive — not in the sense of what my puppy
does to a slipper, but in the sense that it changes the value of nloopCount, “destroying” the
original value. Second, this for loop counts backward from large values down to smaller values.
These two problems are addressed by adding a dedicated counting variable to the for loop. Here’s
what it looks like:

 // ForDemo2 - input a loop count. Loop while
// outputting astring arg number of times.
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int nLoopCount;
 cout << "Enter loop count: ";
 cin >> nLoopCount;

 // count up to the loop count limit
 for (int i = 1; i <= nLoopCount; i++)
 {
 cout << "We've finished " << i
 << " loops" << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This modified version of ForDemo loops the same as it did before. Instead of modifying the value
of nLoopCount, however, this ForDemo2 version uses a new counter variable.

This for loop declares a counter variable i and initializes it to 0. It then compares this counter
variable to nLoopCount. If i is less than nLoopCount, control passes to the output statement within
the body of the for loop. Once the body has completed executing, control passes to the increment
clause where i is incremented and compared to nLoopCount again, and so it goes.

The following shows example output from the program:

 Enter loop count: 5
We've finished 1 loops
We've finished 2 loops
We've finished 3 loops
We've finished 4 loops
We've finished 5 loops
Press Enter to continue...

 When declared within the initialization portion of the for loop, the index variable is
known only within the for loop itself. Nerdy C++ programmers say that the scope of the

variable is limited to the for loop. In the ForDemo2 example just given, the variable i is not
accessible from the return statement because that statement is not within the loop.

Avoiding the dreaded infinite loop
An infinite loop is an execution path that continues forever. An infinite loop occurs any time the
condition that would otherwise terminate the loop can’t occur — usually the result of a coding
error.

Consider the following minor variation of the earlier loop:

 while (nLoopCount > 0)
{
 cout << "Only " << nLoopCount
 << " loops to go" << endl;
}

The programmer forgot to decrement the variable nLoopCount. The result is a loop counter that
never changes. The test condition is either always false or always true. The program executes in a
never-ending (infinite) loop.

 I realize that nothing’s infinite. Eventually the power will fail, the computer will break,
Microsoft will go bankrupt, and dogs will sleep with cats… . Either the loop will stop
executing, or you won’t care anymore. But an infinite loop will continue to execute until
something outside the control of the program makes it stop.

You can create an infinite loop in many more ways than shown here, most of which are a lot more
difficult to spot than this was.

For each his own

 New for 2011 is a form of the for statement commonly known as the “for each” or the
“range-based for loop.” In this for loop, the counting variable is followed by a list of values,
as shown in the following demo program:

 The ForEach does not work on the Macintosh version of Code::Blocks as of this writing.

 // ForEachDemo - C++ includes a form of the "for each"
// which iterates through each member of
// a list
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "The primes less than 20 are:" << endl;
 for(int n : {1, 2, 3, 5, 7, 11, 13, 17, 19})
 {
 cout << n << ", ";
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The values within the braces are known as a list. The variable n is assigned each value in the list:
1 the first time through the loop, then the value 2, then 3, then 5, and so on. The for loop terminates
when the list is exhausted. The output of this program appears as follows:

 The primes less than 20 are:
1, 2, 3, 5, 7, 11, 13, 17, 19,
Press Enter to continue...

I touch on initializer lists again in Chapter 7 and discuss in detail in Chapter 26.

 The range-based loop example shown here does not work on the Macintosh version of
Code::Blocks/gcc. The array-based examples in Chapter 7 do work correctly on the Mac,
however.

Applying special loop controls
C++ defines two special flow-control commands known as break and continue. Sometimes the
condition for terminating a loop occurs at neither the beginning nor the end of the loop, but in the
middle. Consider a program that accumulates numbers of values entered by the user. The loop
terminates when the user enters a negative number.

The challenge with this problem is that the program can’t exit the loop until the user has entered a
value but must exit before the value is added to the sum.

For these cases, C++ defines the break command. When encountered, the break causes control to
exit the current loop immediately. Control passes from the break statement to the statement
immediately following the closed brace at the end of the loop.

The format of the break commands is as follows:

 while(condition) // break works equally well in for loop
{
 if (some other condition)
 {
 break; // exit the loop
 }
} // control passes here when the
 // program encounters the break

Armed with this new break command, my solution to the accumulator problem appears as the
program BreakDemo:

 // BreakDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a negative number.
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 int accumulator = 0;
 cout << "This program sums values from the user\n"
 << "Terminate by entering a negative number"
 << endl;

 // loop "forever"
 for(;;)
 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

 // if it's negative...
 if (nValue < 0)
 {
 // ...then exit
 break;

 }

 // ...otherwise add the number to the accumulator
 accumulator += nValue;
 }

 // now that we've exited the loop
 // output the accumulated result
 cout << "\nThe total is "
 << accumulator
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

After explaining the rules to the user (entering a negative number to terminate and so on), the
program enters what looks like an infinite for loop. Once within the loop, BreakDemo retrieves a
number from the keyboard. Only after the program has read the number can it test to see whether
that number matches the exit criteria. If the input number is negative, control passes to the break,
causing the program to exit the loop. If the input number is not negative, control skips over the
break command to the expression that sums the new value into the accumulator. After the program
exits the loop, it outputs the accumulated value and then exits.

 When performing an operation on a variable repeatedly in a loop, make sure that the
variable is initialized properly before entering the loop. In this case, the program zeros
accumulator before entering the loop where nValue is added to it.

The result of an example run appears as follows:

 This program sums values from the user
Terminate by entering a negative number
Enter next number: 1
Enter next number: 2
Enter next number: 3
Enter next number: -1

The total is 6
Press Enter to continue...

The similar continue command is used less frequently. When the program encounters the continue
command, it immediately moves back to the top of the loop. The rest of the statements in the loop
are ignored for the current iteration.

The following example snippet ignores negative numbers that the user might input. Only a 0
terminates this version (the complete program appears on the website as ContinueDemo):

 while(true)// this while() has the same effect as for(;;)
{
 // input a value
 cout << "Input a value:";
 cin >> nValue;

 // if the value is negative...
 if (nValue < 0)
 {
 // ...output an error message...
 cout << "Negative numbers are not allowed\n";

 // ...and go back to the top of the loop
 continue;
 }

 // ...continue to process input like normal
}

Nesting Control Commands
Return to our PC-screen-repaint problem. Surely it must need a loop structure of some type to
write each pixel from left to right on a single line. (Do Middle Eastern terminals scan from right to
left? I have no idea.) What about repeatedly repainting each scan line from top to bottom? (Do PC
screens in Australia scan from bottom to top?) For this particular task, you need to include a left-
to-right scan loop within the top-to-bottom scan loop.

A loop command within another loop is known as a nested loop. As an example, I have modified
the BreakDemo program to accumulate any number of sequences. In this NestedDemo program, the
inner loop sums numbers entered from the keyboard until the user enters a negative number. The
outer loop continues accumulating sequences until the sum is 0. Here’s what it looks like:

 // NestedDemo - input a series of numbers.
// Continue to accumulate the sum
// of these numbers until the user
// enters a 0. Repeat the process
// until the sum is 0.
#include <cstdio>

#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // the outer loop
 cout << "This program sums multiple series\n"
 << "of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering two\n"
 << "negative numbers in a row\n";

 // continue to accumulate sequences
 int accumulator;
 for(;;)
 {
 // start entering the next sequence
 // of numbers
 accumulator = 0;
 cout << "Start the next sequence\n";

 // loop forever
 for(;;)
 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

 // if it's negative...
 if (nValue < 0)
 {
 // ...then exit
 break;
 }

 // ...otherwise add the number to the
 // accumulator
 accumulator += nValue;
 }

 // exit the loop if the total accumulated is 0

 if (accumulator == 0)
 {
 break;
 }

 // output the accumulated result and start over
 cout << "The total for this sequence is "
 << accumulator << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice the inner for loop looks like the earlier accumulator example. Immediately after that loop,
however, is an added test. If accumulator is equal to 0, the program executes a break statement
that exits the outer loop. Otherwise, the program outputs the accumulated value and starts over.

Switching to a Different Subject?
One last control statement is useful in a limited number of cases. The switch statement resembles a
compound if statement by including a number of different possibilities rather than a single test:

 switch(expression)
{
 case c1:
 // go here if the expression == c1
 break;
 case c2:
 // go here if expression == c2
 break;
 default:
 // go here if there is no match
}

The value of expression must be an integer (int, long, or char). The case values must be constants.

 As of the ’14 standard, they can also be a constant expression. I don't describe constant
expressions until Chapter 10.

When the switch statement is encountered, the expression is evaluated and compared to the various
case constants. Control branches to the case that matches. If none of the cases matches, control
passes to the default clause.

Consider the following example code snippet:

 int choice;
cout << "Enter a 1, 2 or 3:";
cin >> choice;

switch(choice)
{
 case 1:
 // do "1" processing
 break;

 case 2:
 // do "2" processing
 break;

 case 3:
 // do "3" processing
 break;

 default:
 cout << "You didn't enter a 1, 2 or 3\n";
}

Once again, the switch statement has an equivalent; in this case, multiple if statements. However,
when there are more than two or three cases, the switch structure is easier to understand.

 The break statements are necessary to exit the switch command. Without the break
statements, control falls through from one case to the next. (Look out below!)

Part II
Becoming a Functional C++Programmer

 Visit www.dummies.com/extras/cplusplus for great Dummies content online.

http://www.dummies.com/extras/cplusplus

In this part…
Writing functions
Using arrays
Passing pointers
Defining constants and macros
Visit www.dummies.com/extras/cplusplus for great Dummies content online

http://www.dummies.com/extras/cplusplus

Chapter 6
Creating Functions

In This Chapter
 Writing functions
 Passing data to functions
 Naming functions with different arguments
 Creating function prototypes
 Passing by value versus passing by reference
 Providing default values for arguments

The programs developed in prior chapters have been small enough that they can be easily read as
a single unit. Larger, real-world programs are often many thousands if not millions of lines long.
Developers need to break up these monster programs into smaller chunks that are easier to
conceive, describe, develop, and maintain.

C++ allows programmers to divide their code into just such chunks known as functions. A
function is a small block of code that can be executed as a single entity. This allows the
programmer to divide her program into a number of such entities, each that implements some well-
defined subset of the overall program. Functions are themselves broken up into smaller, more
detailed functions in a pyramid of ever smaller, more detailed solutions that make up the complete
program.

This divide-and-conquer approach reduces the complexity of creating a working program of
significant size to something achievable by a mere mortal.

Writing and Using a Function
Functions are best understood by example. This section starts with the example program
FunctionDemo, which simplifies the NestedDemo program I discussed in Chapter 5 by defining a
function to contain part of the logic. Then this section explains how the function is defined and
how it is invoked, using FunctionDemo as a pattern for understanding both the problem and the
solution.

The NestedDemo program in Chapter 5 contains at least three parts that can be easily separated
both in your mind and in fact:

An explanation to the operator as to how data is to be entered
An inner loop that sums up a single sequence of numbers

An outer loop that repeatedly invokes the inner loop until the accumulated value is 0

Separating the program along these lines allows the programmer to concentrate on each piece of
the program separately. The following FunctionDemo program shows how NestedDemo can be
broken up by creating the functions displayExplanation() and sumSequence():

 // FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// displayExplanation - prompt the user as to the rules
// of the game
void displayExplanation(void)
{
 cout << "This program sums multiple series\n"
 << "of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering an\n"
 << "empty sequence.\n"
 << endl;
 return;
}

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered
int sumSequence(void)
{
 // loop forever
 int accumulator = 0;
 for(;;)
 {
 // fetch another number
 int nValue = 0;
 cout << "Enter next number: ";
 cin >> nValue;

 // if it's negative...

 if (nValue < 0)
 {
 // ...then exit from the loop
 break;
 }

 // ...otherwise add the number to the
 // accumulator
 accumulator += nValue;
 }

 // return the accumulated value
 return accumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // display prompt to the user
 displayExplanation();

 // accumulate sequences of numbers...
 for(;;)
 {
 // sum a sequence of numbers entered from
 // the keyboard
 cout << "Enter next sequence" << endl;
 int accumulatedValue = sumSequence();

 // terminate the loop if sumSequence() returns
 // a zero
 if (accumulatedValue == 0)
 {
 break;
 }

 // now output the accumulated result
 cout << "The total is " << accumulatedValue
 << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;

 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Defining our first function
The statement void displayExplanation(void) is known as a function declaration — it introduces
the function definition that immediately follows. A function declaration always starts with the
name of the function preceded by the type of value the function returns and followed by a pair of
open and closed parentheses containing any arguments to the function.

The return type void means that displayExplanation() does not return a value. The void within the
argument list means that it doesn’t take any arguments either. (We’ll get to what that means very
soon.) The body of the function is contained in the braces immediately following the function
declaration.

 Function names are normally written as a multiword description with all the words rammed
together. I start function names with lowercase but capitalize all intermediate words.
Function names almost always appear followed by an open and close parenthesis pair.

A function doesn’t do anything until it is invoked. Our program starts executing with the first line
in main() just like always. The first non-comment line in main() is the call to
displayExplanation():

 displayExplanation();

This passes program control to the first line in the displayExplanation() function. The computer
continues to execute there until it reaches the return statement at the end of displayExplanation()
or until control reaches the closed brace at the end of the function.

Defining the sumSequence() function
The declaration int sumSequence(void) begins the definition of the sumSequence() function. This
declaration says that the function does not expect any arguments but returns a value of type int to
the caller. The body of this function contains the same code previously found in the inner loop of
the NestedDemo example.

The sumSequence() function also contains a return statement to exit the program. This return is not
optional since it contains the value to be returned, accumulator. The type of value returned must
match the type of the function in the declaration, in this case int.

Calling the function sumSequence()
Return back to the main() function in FunctionDemo again. This section of code looks similar to
the outer loop in NestedDemo.

The main difference is the expression accumulatedValue = sumSequence(); that appears where

the inner loop would have been. The sumSequence() statement invokes the function of that name.
The value of the expression sumSequence() is the value returned by the function. This value is
stored in the variable accumulatedValue and then displayed. The main program continues to loop
until sumSequence() returns a sum of 0, which indicates that the user has finished calculating sums.

Divide and conquer
The FunctionDemo program has split the outer loop in main() from the inner loop into a function
sumSequence() and created a displayExplanation() to get things kicked off. This division wasn’t
arbitrary: Both functions in FunctionDemo perform a logically separate operation.

 A good function is easy to describe. You shouldn’t have to use more than a single sentence,
with a minimum of such words as and, or, unless, until or but. For example, here’s a simple,
straightforward definition: “The function sumSequence accumulates a sequence of integer
values entered by the user.” This definition is concise and clear. It’s a world away from the
NestedDemo program description: “The program explains to the user how the program works
AND then sums a sequence of positive values AND displays the sum AND starts over again
UNTIL the user enters a zero-length sum.”

The output of a sample run of this program appears identical to that generated by the NestedDemo
program.

Understanding the Details of Functions
Functions are so fundamental to creating C++ programs that getting a handle on the details of
defining, creating, and testing them is critical. Armed with the example FunctionDemo program,
consider the following definition of function: A function is a logically separated block of C++
code.

The function construct has the following form:

 <return type> name(<arguments to the function>)
{
 // ...
 return <expression>;
}

The arguments to a function are values that can be passed to the function to be used as input
information. The return value is a value that the function returns. For example, in the call to the
function square(10), the value 10 is an argument to the function square(). The returned value is
100 (if it’s not, this is one poorly named function).

Both the arguments and the return value are optional. If either is absent, the keyword void is used
instead. That is, if a function has a void argument list, the function does not take any arguments
when called (this was the case with the FunctionDemo program). If the return type is void, the

function does not return a value to the caller.

 The default argument type to a function is void, meaning that it takes no arguments. A
function int fn(void) may be declared as int fn().

Understanding simple functions
The simple function sumSequence() returns an integer value that it calculates. Functions may return
any of the intrinsic variable types described in Chapter 2. For example, a function might return a
double or a char. If a function returns no value, the return type of the function is labeled void.

 A function may be labeled by its return type — for example, a function that returns an int is
often known as an integer function. A function that returns no value is known as a void
function.

For example, the following void function performs an operation but returns no value:

 void echoSquare()
{
 int value;
 cout << "Enter a value:";
 cin >> value;
 cout << "\nThe square is:" << (value * value) << "\n";
 return;
}

Control begins at the open brace and continues through to the return statement. The return statement
in a void function is not followed by a value. The return statement in a void function is optional. If
it isn’t present, execution returns to the calling function when control encounters the close brace.

Understanding functions with arguments
Functions without arguments are of limited use because the communication from such functions is
one-way — through the return value. Two-way communication is through function arguments.

Functions with arguments
A function argument is a variable whose value is passed to the calling function during the call
operation. The following SquareDemo example program defines and uses a function square() that
returns the square of a double-precision float passed to it:

 // SquareDemo - demonstrate the use of a function
// which processes arguments

#include <cstdio>
#include <cstdlib>

#include <iostream>
using namespace std;

// square - returns the square of its argument
// doubleVar - the value to be squared
// returns - square of doubleVar
double square(double doubleVar)
{
 return doubleVar * doubleVar;
}

// displayExplanation - prompt the user as to the rules
// of the game
void displayExplanation(void)
{
 cout << "This program sums the square of multiple\n"
 << "series of numbers. Terminate each sequence\n"
 << "by entering a negative number.\n"
 << "Terminate the series by entering an\n"
 << "empty sequence.\n"
 << endl;
 return;
}

// sumSquareSequence - accumulate the square of the number
// entered at the keyboard into a sequence
// until the user enters a negative number
double sumSquareSequence(void)
{
 // loop forever
 double accumulator = 0.0;
 for(;;)
 {
 // fetch another number
 double dValue = 0;
 cout << "Enter next number: ";
 cin >> dValue;

 // if it's negative...

 if (dValue < 0)
 {

 // ...then exit from the loop
 break;
 }

 // ...otherwise calculate the square
 double value = square(dValue);

 // now add the square to the
 // accumulator
 accumulator += value;
 }

 // return the accumulated value
 return accumulator;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 displayExplanation();

 // Continue to accumulate numbers...
 for(;;)
 {
 // sum a sequence of numbers entered from
 // the keyboard
 cout << "Enter next sequence" << endl;
 double accumulatedValue = sumSquareSequence();

 // terminate if the sequence is zero or negative
 if (accumulatedValue <= 0.0)
 {
 break;
 }

 // now output the accumulated result
 cout << "\nThe total of the values squared is "
 << accumulatedValue << endl << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');

 cin.get();
 return 0;
}

This is essentially the same FunctionDemo program, except that the sumSquareSequence()
function accumulates the square of the values entered and returns them as a double rather than an
int. The function square() returns the value of its one argument multiplied by itself. The change to
the sumSequence() function is simple: Rather than accumulate the value entered, the function now
accumulates the result returned from square().

Functions with multiple arguments
Functions may have multiple arguments that are separated by commas. Thus, the following function
returns the product of its two arguments:

 int product(int arg1, int arg2)
{
 return arg1 * arg2;
}

main() exposed
The “keyword” main() from our standard program template is nothing more than a function —
albeit a function with strange arguments but a function nonetheless.

When C++ builds a program from source code, it adds some boilerplate code that executes before
your program ever starts. (You can’t see this code without digging into the bowels of the C++
library functions.) This code sets up the environment in which your program operates. For
example, this boilerplate code opens the default input and output channels cin and cout.

After the environment has been established, the C++ boilerplate code calls the function main(),
thereby beginning execution of your code. When your program finishes, it exits from main(). This
enables the C++ boilerplate to clean up a few things before turning control over to the operating
system that kills the program.

The arguments to main() are complicated — we’ll review those later. The int returned from
main() is a status indicator. The program returns a 0 if the program terminates normally. Any other
value can be used to indicate an error — the actual value returned indicates the nature of the error
that caused the program to quit.

Overloading Function Names
C++ must have a way of telling functions apart. Thus, two functions cannot share the same name
and argument list, known as the extended name or the signature. The following extended function
names are all different and can reside in the same program:

 void someFunction(void)
{
 //perform some function

}
void someFunction(int n)
{
 // ...perform some different function
}
void someFunction(double d)
{
 // ...perform some very different function
}
void someFunction(int n1, int n2)
{
 //do something different yet
}

C++ knows that the functions someFunction(void), someFunction(int), someFunction(double),
and someFunction(int, int) are not the same.

 This multiple use of names is known as function overloading.

Programmers often refer to functions by their shorthand name, which is the name of the function
without its arguments, such as someFunction(), in the same way that I have the shorthand name
Stephen (actually, my nickname is Randy, but work with me on this one). But if there's any doubt, I
can be differentiated from other Stephens by including my family name. In the same way,
overloaded functions can be differentiated by their argument lists.

Here’s a typical application that uses overloaded functions with unique extended names:

 int intVariable1, intVariable2;
double doubleVariable;

// functions are distinguished by the type of
// the argument passed
someFunction(); // calls someFunction(void)
someFunction(intVariable1); // calls someFunction(int)
someFunction(doubleVariable);// calls someFunction(double)
someFunction(intVariable1, intVariable2); // calls
 // someFunction(int, int)

// this works for constants as well
someFunction(1); // calls someFunction(int)
someFunction(1.0); // calls someFunction(double)
someFunction(1, 2); // calls someFunction(int, int)

In each case, the type of the arguments matches the extended names of the three functions.

 The return type is not part of the extended name of the function. The following two
functions have the same name, so they can’t be part of the same program:

 int someFunction(int n); // full name of the function
 // is someFunction(int)
double someFunction(int n); // same name
long l = someFunction(10); // call which function?

Here C++ does not know whether to convert the value returned from the double version of
someFunction() to a long or promote the value returned from int version.

Defining Function Prototypes
A function must be declared before it can be used. That’s so C++ can compare the call against the
declaration to make sure that any necessary conversions are performed. However, a function does
not have to be defined when it is first declared. A function may be defined anywhere in the
module. (A module is another name for a C++ source file.)

Consider the following code snippet:

 int main(int nNumberofArgs, char* pszArgs[])
{
 someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{
 // ...do something
}

main() doesn’t know the proper argument types of the function someFunc() at the time of the call.
C++ might surmise from the call that the full function definition is someFunc(int, int) and that its
return type is void; however, the definition of the function that appears immediately after main()
shows that the programmer wants the first argument converted to a floating point and that the
function does actually return a value.

I know, I know — C++ could be less lazy and look ahead to determine the extended name of
someFunc() on its own, but it doesn’t. What is needed is some way to inform main() of the full
name of someFunc() before it is used. This is handled by what we call a function prototype
declaration.

A prototype declaration appears the same as a function with no body. In use, a prototype
declaration looks like this:

 int someFunc(double, int);
int main(int nNumberofArgs, char* pszArgs[])

{
 someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{
 // ...do something
}

The prototype declaration tells the world (at least that part of the world after the declaration) that
the extended name for someFunc() is someFunction(double, int). The call in main() now knows to
cast the 1 to a double before making the call. In addition, main() knows that someFunc() returns an
int value to the caller.

It is common practice to include function prototypes for every function in a module either at the
beginning of the module or, more often, in a separate file that can be included within other
modules at compile-time. That’s the function of the include statements that appear at the beginning
of the Official C++ For Dummies program template:

 #include <cstdio>
#include <cstdlib>
#include <iostream>

These three files cstdio, cstdlib, and iostream include prototype declarations for the common
system functions that we’ve been using, such as cout << “string”. The contents of these files are
inserted at the point of the #include statement by the compiler as part of its normal duties.

Chapter 10 is dedicated to include files and other so-called preprocessor commands.

Defaulting Arguments
You can provide default values for arguments in your function declaration. Consider the following
simple example:

 // isLegal - return true if the age is greater
// than or equal to the minimum age
// which defaults to 21
bool isLegal(int age, int minAge = 21)
{
 return age >= minAge;
}

This function returns a true if the first argument passed, age, is greater than the second argument,
minAge, and the second argument defaults to 21 if you don't say otherwise in the function call.
Thus, the following calls are both legal:

 legal = isLegal(age); // same as isLegal(age, 21)
if (inLouisiana())

{
 legal = isLegal(age, 18);
}

The call isLegal(age) is completely equivalent to isLegal(age, 21). C++ just provides the default
argument for you. The call to isLegal(age, 18) ignores the default value.

 Normally the defaults are provided in the prototype declarations.

You can default more than one argument, but defaults must be defined from right to left and filled
in from left to right:

 // the following is legal
bool isWorkingAge(int age, int minAge=18, int maxAge=65);

// check if the worker is between 18 and 65
legal = isWorkingAge(age);

// check if worker is between 21 and 65
legal = isWorkingAge(age, 21);

// check if work is between 21 and 60
legal = isWorkingAge(age, 21, 60);

// the following does NOT check if the worker is
// between 18 and 60
legal = isWorkingAge(age, 60);

The first call uses the default values for both the minimum and maximum age (18 and 65,
respectively). The second call uses the default maximum age of 65 but supplies a different
minimum age of 21. The third call provides both an explicit minimum and maximum age.

 The last call does not check whether age is between 18 and 60 as you might expect. In this
case, the call is made with a minimum age of 60 and a maximum age of 65.

 Default arguments can sometimes confuse C++ when combined with function overloading.
For example, the following is not legal:

 bool isLegal(int age);
bool isLegal(int age, int minAge = 21); // not allowed

The problem is that if you called isLegal(10), C++ wouldn't know which one of the two functions

to call: the first function with just one argument or the second function with the second argument
defaulted.

Passing by Value and Passing by Reference
C++ normally passes arguments to functions by value. That is, if I call a function fn(n), it is the
value of n that gets passed to the function. This allows me to make calls like the following:

 fn(a + b); // pass the value of a + b

What gets passed in this snippet is the result of the expression a + b.

This has a perhaps surprising side effect demonstrated by the following snippet:

 void multiplyByTwo(int m)
{
 m *= 2;
}

int n = 1;
multiplyByTwo(n);

cout << "n = " << n << endl;

You may be surprised to find out that this example prints out n = 1.

Let's go through the example one step at a time:

1. The main program declares the variable n and initializes it to 1.
2. The program then passes the value of n (1) to the function multiplyByTwo() and calls it m.
3. The function multiplies the value passed it by two and stores the result in the local variable
4. multiplyByTwo() discards m upon returning.
5. The main program displays the unchanged value of n (1).

 This is called pass by value — the alternative is called pass by reference.

You can tell C++ that you want to pass not the value of a variable but a reference to a variable by
adding an ampersand (&) to the type, as in the following snippet:

 void multiplyByTwo(int& m) // referential argument
{
 m *= 2;
}

int n = 1;
multiplyByTwo(n);

cout << "n = " << n << endl;

This example does the following:

1. The main program declares the variable n and initializes it to 1.
2. The program then passes a reference to n to the function multiplyByTwo() which calls that

reference m.
3. The function multiplies by two the variable referenced by m and saves the results back into the

variable referenced by m (in other words, the variable n).
4. The main program displays the changed value of n (2).

 Arrays (which I introduce in the next chapter) are always passed by reference for reasons
that I will explain in Chapter 8.

I will have a lot more to say about reference arguments in Chapter 8.

Variable Storage Types
Variables are also assigned a storage type depending on where and how they are defined in the
function, as shown in the following example:

 int globalVariable;
void fn()
{
 int localVariable;
 static int staticVariable = 1;
}

Variables declared within a function like localVariable are said to be local. The variable
localVariable doesn’t exist until execution passes through its declaration within the function fn().
localVariable ceases to exist when the function returns. Upon return, whatever value that is stored
in localVariable is lost. In addition, only fn() has access to localVariable — other functions
cannot reach into the function to access it.

By comparison, the variable globalVariable is created when the program begins execution and
exists as long as the program is running. All functions have access to globalVariable all the time.

The keyword static can be used to create a sort of mishling — something between a global and
local variable. The static variable staticVariable is created when execution reaches the
declaration the first time that function fn() is called, just like a local variable. The static variable

is not destroyed when program execution returns from the function, however. Instead, it retains its
value from one call to the next. If fn() assigns a value to staticVariable once, it’ll still be there the
next time fn() is called. The initialization portion of the declaration is ignored every subsequent
time execution passes through.

Chapter 7
Storing Sequences in Arrays

In This Chapter
 Considering the need for something like an array
 Introducing the array data type
 Using an array
 Using the most common type of array — the character string

An array is a sequence of variables that shares the same name and that is referenced using an
index. Arrays are useful little critters that allow you to store a large number of values of the same
type that are related in some way — for example, the batting averages of all the players on the
same team might be a good candidate for storage within an array. Arrays can be multidimensional,
too, allowing you, for example, to store an array of batting averages within an array of months,
which allows you to work with the batting averages of the team as they occur by month.

In this chapter, you find out how to initialize and use arrays for fun and profit. You also find out
about an especially useful form of array called a char string.

Arraying the Arguments for Arrays
Consider the following problem. You need a program that can read a sequence of numbers from
the keyboard and display their sum. You guessed it — the program stops reading in numbers as
soon as you enter a negative number. Unlike similar programs in Chapters 5 and 6, however, this
program will output all the numbers entered before displaying the average.

You could try to store numbers in a set of independent variables, as in

 cin >> value1;
if (value1 >= 0)
{
 cin >> value2;
 if (value2 >= 0)
 {
 ...

You can see that this approach can’t handle sequences involving more than just a few numbers.
Besides, it’s ugly. What we need is some type of structure that has a name like a variable but that
can store more than one value. May I present to you, Ms. A. Ray.

An array solves the problem of sequences nicely. For example, the following snippet declares an

array valueArray that has storage for up to 128 int values. It then populates the array with numbers
entered from the keyboard:

 int nValue;

// declare an array capable of holding up to 128 ints
int nValueArray[128];

// define an index used to access subsequent members of
// of the array; don't exceed the 128 int limit
for (int i = 0; i < 128; i++)
{
 cin >> nValue;

 // exit the loop when the user enters a negative
 // number
 if (nValue < 0)
 {
 break;
 }
 nValueArray[i] = nValue;
}

The second line of this snippet declares an array nValueArray. Array declarations begin with the
type of the array members: in this case, int. This is followed by the name of the array. The last
elements of an array declaration are open and closed brackets containing the maximum number of
elements that the array can hold. In this code snippet, nValueArray can store up to 128 integers.

 The size of an array must be a constant expression — this means an expression that C++
can calculate when it does the build.

 The 2014 standards allows the program to declare the size of an array with any expression
as long as its value is known when the declaration is encountered. However, once declared,
the size of the array is fixed.

This snippet reads a number from the keyboard and stores it into each subsequent member of the
array nValueArray. You access an individual element of an array by providing the name of the
array followed by brackets containing the index. The first integer in the array is nValueArray[0],
the second is nValueArray[1], and so on.

In use, nValueArray[i] represents the ith element in the array. The index variable i must be a
counting variable — that is, i must be a char, an int, or a long. If nValueArray is an array of ints,

nValueArray[i] is an int.

Using an array
The following program inputs a sequence of integer values from the keyboard until the user enters
a negative number. The program then displays the numbers input and reports their sum.

 // ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers
// and then displaying them and their sum
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
int readArray(int integerArray[], int maxNumElements);
int sumArray(int integerArray[], int numElements);
void displayArray(int integerArray[], int numElements);

int main(int nNumberofArgs, char* pszArgs[])
{
 // input the loop count
 cout << "This program sums values entered "
 << "by the user\n";
 cout << "Terminate the loop by entering "
 << "a negative number\n";
 cout << endl;

 // read numbers to be summed from the user into a
 // local array
 int inputValues[128];
 int numberOfValues = readArray(inputValues, 128);

 // now output the values and the sum of the values
 displayArray(inputValues, numberOfValues);
 cout << "The sum is "
 << sumArray(inputValues, numberOfValues)
 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();

 return 0;
}

// readArray - read integers from the operator into
// 'integerArray' until operator enters neg.
// Return the number of elements stored.
int readArray(int integerArray[], int maxNumElements)
{
 int numberOfValues;
 for(numberOfValues = 0;
 numberOfValues < maxNumElements;
 numberOfValues++)
 {
 // fetch another number
 int integerValue;
 cout << "Enter next number: ";
 cin >> integerValue;

 // if it's negative...
 if (integerValue < 0)
 {
 // ...then exit
 break;
 }

 // ... otherwise store the number
 // into the storage array
 integerArray[numberOfValues] = integerValue;
 }

 // return the number of elements read
 return numberOfValues;
}

// displayArray - display the members of an
// array of length sizeOfloatArray
void displayArray(int integerArray[], int numElements)
{
 cout << "The value of the array is:" << endl;
 for (int i = 0; i < numElements; i++)
 {
 cout << i << ": " << integerArray[i] << endl;
 }

 cout << endl;
}

// sumArray - return the sum of the members of an
// integer array
int sumArray(int integerArray[], int numElements)
{
 int accumulator = 0;
 for (int i = 0; i < numElements; i++)
 {
 accumulator += integerArray[i];
 }
 return accumulator;
}

The program ArrayDemo begins with prototype declarations of the functions readArray(),
sumArray(), and displayArray(), which it will need later. The main program starts with a prompt
to the user to input data to be summed. The program then declares an array inputValues[] to be
used to store the values input by the user. The main program passes this array to readArray(),
along with the length of the array — readArray() cannot read more than 128 values even if the user
does not enter a negative number since that’s all the room allocated in the inputValues[] array.

 The array inputValues is declared as 128 integers long. If you’re thinking that this must be
more than enough, don’t count on it. No matter how large you make the array, always put a
check to make sure that you do not exceed the limits of the array. Writing more data than an
array can hold causes your program to perform erratically and often to crash. This is
discussed in detail in Chapter 28.

The main function then calls displayArray() to print the contents of the array. Finally, the function
calls sumArray() to add the elements in the array.

The readArray() function takes two arguments: the integerArray[] into which to store the values it
reads and maxNumElements, the maximum number of integer values for which there is room at the
inn. The function begins with a for loop that reads integer values. Every non-negative value that
the function reads is saved into integerArray[]. The first element goes into integerArray[0], the
second into integerArray[1], and so forth.

Once the user enters a negative number, the program breaks out of the loop and returns the total
numberOfValues input.

The displayArray() function also uses a for loop to traverse the elements of the array, starting at 0
and continuing to the last element, which is numElements - 1. The final function, sumArray(), also
iterates through the array but sums the elements stored there into accumulator, which it then
returns to the caller.

Notice, yet again, that the index i in the displayArray() and sumArray() functions is initialized to 0
and not to 1. In addition, notice how the for loop terminates as soon as i reaches numElements.
The output from a sample run appears as follows:

 This program sums values entered by the user
Terminate the loop by entering a negative number

Enter next number: 10
Enter next number: 20
Enter next number: 30
Enter next number: 40
Enter next number: -1
The value of the array is:
0: 10
1: 20
2: 30
3: 40

The sum is 100
Press Enter to continue...

 Just to keep non-programmers guessing, the term iterate means to traverse through a set of
objects such as an array. Programmers say that the preceding functions iterate through the
array.

Initializing an array
A local variable does not start life with a valid value, not even the value 0. Said another way, a
local variable contains garbage until you actually store something in it. Locally declared arrays
are the same — each element contains garbage until you actually assign something to it. You
should initialize local variables when you declare them. This rule is even truer for arrays. It is far
too easy to access uninitialized array elements thinking that they are valid values.

 By “local variable”, I'm talking about the normal variables declared within a function.
C++ purists actually call these automatic variables to differentiate them from static variables
(discussed in Chapter 18).

Fortunately, a small array may be initialized at the time it is declared with an initializer list. The
following code snippet demonstrates how this is done:

 float floatArray[5] = {0.0, 1.0, 2.0, 3.0, 4.0};

This initializes floatArray[0] to 0, floatArray[1] to 1.0, floatArray[2] to 2.0, and so on.

C++ pads the initialization list with 0s if the number of elements in the list is less than the size of
the array. In fact, an empty initializer list can be used to initialize an array to 0:

 int nArray[128] = {}; // initialize array to all 0's

The number of initialization constants can determine the size of the array. For example, you could
have determined that floatArray has five elements just by counting the values within the braces.
C++ can count as well (here’s at least one thing C++ can do for itself).

 float floatArray[] = {0.0, 1.0, 2.0, 3.0, 4.0};

Accessing too far into an array
Mathematicians start counting arrays with 1. Most program languages start with an offset of 1 as
well. C++ arrays begin counting at 0. The first member of a C++ array is valueArray[0]. That
makes the last element of a 128-integer array integerArray[127] and not integerArray[128].

Unfortunately for the programmer, C++ does not check to see whether the index you are using is
within the range of the array. C++ is perfectly happy giving you access to integerArray[200]. Our
integerArray yard is only 128 integers long — 200 is 72 integers into someone else’s yard. No
telling who lives there and what he’s storing at that location. Reading from integerArray[200]
will return some unknown and unpredictable value. Writing to that location generates
unpredictable results. It may do nothing — the house may be abandoned and the yard unused. On
the other hand, it might overwrite some data, thereby confusing the neighbor and making the
program act in a seemingly random fashion. Or it might crash the program.

 The most common wrong way to access an array is to read or write location
integerArray[128]. Although it’s only one element beyond the end of the array, reading or
writing this location is just as dangerous as using any other incorrect address.

Arraying range-based for loops

 You can access the elements of an array using a range-based for loop in some cases. The
following for loop initializes all of the members of nArray to 0:

 int nArray[128];
for(int& n: nArray)
{
 n = 0;
}

This for loop says assign the variable n to be a reference to each element of nArray in turn. A 0 is
then assigned to each element in nArray through the reference n.

 The following range-based for loop has no effect:

 int nArray[128];
for(int n: nArray)
{
 n = 0;
}

Without the ampersand (&), n is assigned the value of each element of nArray in turn. The variable
n is then overwritten with a 0, leaving the value of nArray unchanged. Compare this to passing
arguments to functions by value versus passing by reference, as described in Chapter 6.

 Range-based for loops can be used only where C++ knows the size of the array at build
time. A range-based for loop would not work within the displayArray() function, for
example. This function is built to handle arrays of any size. You get really strange build time
error messages when you use range-based for loops on arrays where the size is not known. I
have more to say about this in Chapter 26.

Defining and using arrays of arrays
Arrays are adept at storing sequences of numbers. Some applications require sequences of
sequences. A classic example of this matrix configuration is the spreadsheet. Laid out like a
chessboard, each element in the spreadsheet has both an x and a y offset.

C++ implements the matrix as follows:

 int intMatrix[10][5];

This matrix is 10 elements in one dimension and 5 in another, for a total of 50 elements. In other
words, intMatrix is a 10-element array, each element of which is a 5-int array. As you might
expect, one corner of the matrix is in intMatrix[0][0], while the other corner is intMatrix[9][4].

Whether you consider intMatrix to be 10 elements long in the x dimension or in the y dimension is
a matter of taste. A matrix can be initialized in the same way that an array is:

 int intMatrix[2][3] = {{1, 2, 3}, {4, 5, 6}};

This line initializes the 3-element array intMatrix[0] to 1, 2, and 3; and the 3-element array
intMatrix[1] to 4, 5, and 6.

Using Arrays of Characters
The elements of an array can be of any type. Arrays of floats, doubles, and longs are all possible;
however, arrays of characters have particular significance.

Creating an array of characters
Human words and sentences can be expressed as an array of characters. An array of characters
containing my first name would appear as

 char sMyName[] = {'S', 't', 'e', 'p', 'h', 'e', 'n'};

The following small program displays my name:

 // CharDisplay - output a character array to
// standard output, the MS-DOS window
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void displayCharArray(char charArray[], int sizeOfArray);

int main(int nNumberofArgs, char* pszArgs[])
{
 char charMyName[]={'S', 't', 'e', 'p', 'h', 'e', 'n'};
 displayCharArray(charMyName, 7);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// displayCharArray - display an array of characters
// by outputing one character at
// a time
void displayCharArray(char charArray[], int sizeOfArray)
{
 for(int i = 0; i< sizeOfArray; i++)
 {
 cout << charArray[i];
 }
}

The program declares a fixed array of characters charMyName containing — you guessed it —

my name (what better name?). This array is passed to the function displayCharArray() along with
its length. The displayCharArray() function is identical to the displayArray() function in the
earlier example program except that this version displays chars rather than ints.

This program works fine; however, it is inconvenient to pass the length of the array with the array
itself. If we could come up with a rule for determining the end of the string of characters, we
wouldn’t need to pass its length — you would know that the string was complete when you
encountered the special rule that told you so.

Creating a string of characters
In many cases, all values for each element are possible. However, C++ reserves the special
“character” 0 as the non-character. You can use ‘\0' to mark the end of a character array. (The
numeric value of ‘\0' is 0, but the type of ‘\0' is char.)

 The character ‘\y' is the character whose octal value is y. The character ‘\0' is the
character with a value of 0, otherwise known as the null character. Using that rule, the
previous small program becomes

 // DisplayString - output a character array to
// standard output, the MS-DOS window
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void displayString(char stringArray[]);

int main(int nNumberofArgs, char* pszArgs[])
{
 char charMyName[] =
 {'S', 't', 'e', 'p', 'h', 'e', 'n', '\0'};
 displayString(charMyName);
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// displayString - display a character string
// one character at a time
void displayString(char stringArray[])
{
 for(int i = 0; stringArray[i] != '\0'; i++)
 {
 cout << stringArray[i];
 }
}

The declaration of charMyName declares the character array with the extra null character ‘\0' on
the end. The displayString program iterates through the character array until a null character is
encountered.

The function displayString() is simpler to use than its displayCharArray() predecessor because it
is no longer necessary to pass along the length of the character array. This secret handshake of
terminating a character array with a null is so convenient that it is used throughout the C++
language. C++ even gives such an array a special name.

 A string of characters is a null-terminated character array. It is officially known as a
null-terminated byte string, or NTBS. The simpler term C-string is also used to differentiate
from the C++ type string.

The choice of ‘\0' as the terminating character was not random. Remember that 0 is the only
numeric value that converts to false; all other values translate to true. This means that the for loop
could be (and usually is) written as

 for(int i = 0; stringArray[i]; i++)

This whole business of null-terminated character strings is so ingrained in the C++ language
psyche that C++ uses a string of characters surrounded by double quotes to be an array of
characters automatically terminated with a ‘\0' character. The following are identical
declarations:

 char szMyName[] = "Stephen";
char szAlsoMyName[] =
 {'S', 't', 'e', 'p', 'h', 'e', 'n', '\0'};

The naming convention used here is exactly that, a convention. C++ does not care. The prefix sz
stands for zero-terminated string.

 The string Stephen is eight characters long and not seven — the null character after the n
is assumed. The string "" is one character long, consisting of just the null character.

Manipulating Strings with Character
The following Concatenate program inputs two strings from the keyboard and concatenates them
into a single string:

 // Concatenate - concatenate two strings
// with a " - " in the middle
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototype declarations
void concatString(char szTarget[], const char szSource[]);

int main(int nNumberofArgs, char* pszArgs[])
{
 // read first string...
 char szString1[256];
 cout << "Enter string #1:";
 cin.getline(szString1, 128);

 // ...now the second string...
 char szString2[128];
 cout << "Enter string #2:";
 cin.getline(szString2, 128);

 // ...concatenate a " - " onto the first...
 concatString(szString1, " - ");

 // ...now add the second string...
 concatString(szString1, szString2);

 // ...and display the result
 cout << "\n" << szString1 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

// concatString - concatenate the szSource string
// onto the end of the szTarget string
void concatString(char szTarget[], const char szSource[])
{
 // find the end of the first string
 int targetIndex = 0;
 while(szTarget[targetIndex])
 {
 targetIndex++;
 }

 // tack the second onto the end of the first
 int sourceIndex = 0;
 while(szSource[sourceIndex])
 {
 szTarget[targetIndex] =
 szSource[sourceIndex];
 targetIndex++;
 sourceIndex++;
 }

 // tack on the terminating null
 szTarget[targetIndex] = '\0';
}

The Concatenate program reads two character strings and appends them together with a " - " in
the middle.

The program begins by reading a string from the keyboard. The program does not use the normal
cin >> szString1 for two reasons. First, the cin >> operation stops reading when any type of
whitespace is encountered. Characters up to the first whitespace are read, the whitespace
character is tossed, and the remaining characters are left in the input hopper for the next cin >>
statement. Thus, if I were to enter “the Dog”, szString2 would be filled with “the” and the word
“Dog” would be left in the input buffer.

The second reason is that the getline() allows the programmer to specify the size of the buffer. The
call to getline(szString2, 128) will not read more than 128 bytes no matter how many are input.

Instead, the call to getline() inputs an entire line up to but not including the newline at the end.
We’ll review this function with other file I/O functions in detail in Chapter 23.

After reading the first string into szString1[], the program appends " - " onto the end by calling
concatString(). It concatenates the second string by calling concatString() with szString2[].

The concatString() function accepts a target string, szTarget, and a source string, szSource. The

function begins by scanning szTarget for the terminating null character, which it stores in
targetIndex. The function then enters a second loop in which it copies characters from the
szSource into szTarget starting at the terminating null. The final statement in concatString() slaps
a terminating null on the completed string.

An example output from the program appears as follows:

 Enter string #1:this is a string
Enter string #2:THIS IS A STRING

this is a string - THIS IS A STRING
Press Enter to continue...

Adding Some Library Functions
The C++ programmer is often required to manipulate zero-terminated strings. C++ provides a
number of standard string-manipulation functions to make the job easier. A few of these functions
are listed in Table 7-1.

Table 7-1 String-Handling Functions
Name Operation

int strlen(string) Returns the number of characters in a string (not including the terminating null).

char* strcpy(target,
source) Copies the source string into a target array.

char* strcat(target,
source) Concatenates the source string onto the end of the target string.

char* strncpy(target,
source, n) Copies a string up to n characters from the source string into a target array.

char* strncat(target,
source, n) Concatenates the source string onto the end of the target string or n characters, whichever comes first.

char* strstr(string,
pattern) Returns the address of the first occurrence of pattern in string. Returns a null if pattern is not found.

int strcmp(source1,
source2)

Compares two strings. Returns –1 if source1 occurs before source2 in the dictionary and 1 if later. Returns
0 if the two strings match exactly.

int strncmp(source1,
source2, n) Compares the first n characters in two strings.

 You need to add the statement #include <cstring> to the beginning of any program that uses
a str... function because this include file contains the prototype declarations that C++ requires
to check up on your work.

 The arguments to the str...() functions appear backward to any reasonable individual (you

might consider this an acid test for “reasonable”). For example, the function strcat(target,
source) tacks the second string source onto the end of the first argument target.

The strncpy() and strncat() functions are similar to their strcpy() and strcat() counterparts except
that they accept the length of the target buffer as one of their arguments. The call strncpy(szTarget,
szSource, 128) says “copy the characters in szSource into szTarget until you copy a null character
or until you've copied 128 characters, whichever comes first.” This avoids inadvertently writing
beyond the end of the source string array.

Making Room for Wide Strings
The standard C++ library includes similar functions to handle wide character strings. A few of
these functions are listed in Table 7-2.

Table 7-2 Wide String-Handling Functions
Name Operation

int wcslen(string) Returns the number of wide characters in a string, not including the terminating null.

wchar_t* wcscpy(target,
source) Copies the source wide string into a target array.

wchar_t* wcscat(target,
source) Concatenates the source wide string onto the end of the target wide string.

wchar_t* wcsncpy(target,
source, n) Copies a wide string up to n characters from the source string into a target array.

wchar_t* wcsncat(target,
source, n) Concatenates the source string onto the end of the target string or n characters, whichever comes first.

wchar_t* wcsstr(string,
pattern) Finds the address of the first occurrence of pattern in string. Returns a null if pattern is not found.

int wcscmp(source1,
source2)

Compares two wide strings. Returns –1 if source1 occurs before source2 in the dictionary and 1 if later.
Returns 0 if the two strings match exactly.

int wcsncmp(source1,
source2, n) Compares the first n wide characters in two wide strings.

 Remember from Chapter 2 that wide characters are used for applications that must support
foreign languages, where a measly 255 different characters may not be enough.

The following shows a wide character version of the Concatenate program:

 // ConcatenateWide - concatenate two wide strings
// with a " - " in the middle using library routines
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // read first string...
 wchar_t wszString1[260];
 cout << "Enter string #1:";
 wcin.getline(wszString1, 128);

 // ...now the second string...
 wchar_t wszString2[128];
 cout << "Enter string #2:";
 wcin.getline(wszString2, 128);

 // now tack the second onto the end of the first
 // with a dash in between
 wcsncat(wszString1, L" - ", 260);
 wcsncat(wszString1, wszString2, 260);

 wcout << L"\n" << wszString1 << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The wide character string program looks similar to its single-byte character string cousin except
for the following differences:

Variables are declared wchar_t rather than char.
Constant characters and constant strings appear preceded by an L, as in L“This is a wide
string”.
The objects wcin and wcout are used in place of cin and cout for input and output.
The wcs … functions appear in place of the narrow str … functions.

 The output from ConcatenateWide appears identical to that of the char-based
Concatenate program to those of us who do most of their input/output in European languages.
The topic of writing programs capable of handling multiple languages with different
alphabets and rules of grammar is known as localization and beyond the scope of a beginning

book.

 ANSI C++ includes a type string designed to make it easier to manipulate strings of text.
However, this type makes use of features of the language that you haven't seen yet. I return to
the string type in Chapter 13.

Chapter 8
Taking a First Look at C++ Pointers

In This Chapter
 Addressing variables in memory
 Declaring and using pointer variables
 Recognizing the inherent dangers of pointers
 Passing pointers to functions
 Allocating objects off the heap (whatever that is)

So far, the C++ language has been fairly conventional compared with other programming
languages. Sure, some computer languages lack (il-)logical operators like those in Chapter 4, and
C++ has its own unique symbols for things, but there’s been nothing new in the way of concepts.
C++ really separates itself from the crowd in its use of pointer variables. A pointer is a variable
that “points at” other variables. I realize that’s a circular argument, but suspend your disbelief at
least until you can get into the chapter.

This chapter introduces the pointer variable type. It begins with some concept definitions, flows
through pointer syntax, and then introduces some of the reasons for the pointer mania that grips the
C++ programming world.

Variable Size
My weight goes up and down all the time, but here I’m really referring to the size of a variable, not
my own variable size. Memory is measured in bytes or bits. The keyword sizeof returns the size of
its argument in bytes. The following program uses this to determine the size of the different
variable types:

 // VariableSize - output the size of each type of variable
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 bool b; char c; int n; long l;
 long long ll; float f; double d; long double ld;

 cout << "sizeof a bool = " << sizeof b << endl;
 cout << "sizeof a char = " << sizeof c << endl;
 cout << "sizeof an int = " << sizeof n << endl;
 cout << "sizeof a long = " << sizeof l << endl;
 cout << "sizeof a long long = " << sizeof ll<< endl;
 cout << "sizeof a float = " << sizeof f << endl;
 cout << "sizeof a double = " << sizeof d << endl;
 cout << "sizeof a long double = " << sizeof ld<< endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The VariableSize program generates the following output:

 sizeof a bool = 1
sizeof a char = 1
sizeof an int = 4
sizeof a long = 4
sizeof a long long = 8
sizeof a float = 4
sizeof a double = 8
sizeof a long double = 12
Press Enter to continue...

 As they say, “Your results may vary.” You may get different results if using a compiler
other than gcc for Windows. For example, you may find that an int is smaller than a long.
C++ doesn’t say exactly how big a variable type must be; it just says that a long is the same
size as or larger than an int and that a double is the same size as or larger than a float. The
sizes shown here are typical for a 32-bit 80-x-86 processor.

What’s in an Address?
Like the saying goes, “Everyone has to be somewhere.” Every C++ variable is stored somewhere
in the computer’s memory. Memory is broken into individual bytes, with each byte carrying its
own address numbered 0, 1, 2, and so on.

A variable intReader might be at address 0x100, whereas floatReader might be over at location
0x180. (By convention, memory addresses are expressed in hexadecimal.) Of course, intReader

and floatReader might be somewhere else in memory entirely — only the computer knows for sure
and only at the time that the program is executed.

This is somewhat analogous to a hotel. When you make your reservation, you may be assigned
room 0x100. (I know that suite numbers are normally not expressed in hexadecimal, but bear with
me.) Your buddy may be assigned 80 doors down in room 0x180. Each variable is assigned an
address when it is created (more on that in this chapter when we talk about scope).

Address Operators
The two pointer-related operators are shown in Table 8-1. The & operator says “tell me your
address,” and * says “the value at the following address.”

Table 8-1 Pointer Operators
Operator Meaning

& (unary) (In an expression) the address of

& (unary) (In a declaration) reference to

* (unary) (In an expression) the thing pointed at by

* (unary) (In a declaration) pointer to

 These are not to be confused with the binary & and * operators discussed in Chapters 3
and 4.

The following Layout program demonstrates how the & operator can be used to display the layout
of variables in memory:

 // Layout - this program tries to give the
// reader an idea of the layout of
// local memory in her compiler
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 int start;
 int n; long l; long long ll;
 float f; double d; long double ld;
 int end;

 // set output to hex mode

 cout.setf(ios::hex);
 cout.unsetf(ios::dec);

 // output the address of each variable
 // in order to get an idea of how variables are
 // laid out in memory
 cout << "--- = " << &start << endl;
 cout << "&n = " << &n << endl;
 cout << "&l = " << &l << endl;
 cout << "&ll = " << &ll << endl;
 cout << "&f = " << &f << endl;
 cout << "&d = " << &d << endl;
 cout << "&ld = " << &ld << endl;
 cout << "--- = " << &end << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program declares a set of variables of different types. It then applies the & operator to each
one to find out its address. The results of one execution of this program with Code::Blocks appear
as follows:

 --- = 0x28fefc
&n = 0x28fef8
&l = 0x28fef4
&ll = 0x28fee8
&f = 0x28fee4
&d = 0x28fed8
&ld = 0x28fec0
--- = 0x28febc
Press Enter to continue...

 Your results may vary. The absolute address of program variables depends on a lot of
factors. The C++ standard certainly doesn’t specify how variables are to be laid out in
memory.

Notice how the variable n is exactly 4 bytes from the first variable declared (start), which
corresponds to the size of an int (4 bytes). Similarly, the variable l appears 4 bytes down from

that, which is also the size of a long. However, the float variable f is a full 12 bytes from its
neighboring variable d (0x28fee4 – 0x28fed8 = 0x000c). That’s way more than the 4 bytes
required for a float.

 There is no requirement that the C++ compiler pack variables in memory with no spaces
between them. In fact, you often see these gaps in memory when mixing variables of different
size.

 The Code::Blocks/gcc compiler could be storing variables for its own use in between our
variables. Or, more likely, a peculiarity in the way the variables are being laid out in memory
is causing the compiler to waste a small amount of space.

Using Pointer Variables
A pointer variable is a variable that contains an address, usually the address of another variable.
Returning to the analogy of hotel room numbers, I might tell my son that I will be in room 0x100 on
my trip. My son can act as a pointer variable of sorts. Anyone can ask him at any time, “Where’s
your father staying?” Include $5 with that question, and he’ll spill his guts without hesitation.

By the way, notice something about pointer variables: No matter where my son is, and no matter
how many other people he tells of my whereabouts, I’m still in room 0x100.

The following pseudo-C++ demonstrates how the two address operators shown in Table 8-1 are
used:

 mySon = &DadsRoom; // tell mySon the address of Dad's Room
room = *mySon; // "Dad's room number is"

The following C++ code snippet shows these operators used correctly:

 void fn()
{
 int nVar;
 int* pnVar;

 pnVar = &nVar; // pnVar now points to nVar
 *pnVar = 10; // stores 10 into the int location
} // pointed at by pnVar

The function fn() begins with the declaration of nVar. The next statement declares the variable
pnVar to be a variable of type pointer to an int.

Pointer variables are declared like normal variables except for the addition of the unary *
character. This * character can appear anywhere between the base type name — the following two

declarations are equivalent:

 int* pnVar1;
int *pnVar2;

Which you use is a matter of personal preference.

 The * character is called the asterisk character (that’s logical enough), but because
asterisk is hard to say, many programmers have come to call it the star or, less commonly, the
splat character. Thus, they would say “star pnVar” or “splat pnVar.”

In an expression, the unary operator & means “the address of.” Thus, we would read the
assignment pnVar = &nVar; as “pnVar gets the address of nVar.”

Using different types of pointers
Every expression has a type as well as a value. The type of the expression nVar is int; the type of
&nVar is “pointer to an integer,” written int*. Comparing this with the declaration of pVar, you
see that the types match exactly:

 int* pnVar = &nVar; // both sides of the assignment
 // are of type int*

Similarly, because pnVar is of type int*, the type of *pnVar is int:

 *pnVar = 10; // both sides of the assignment are
 // of type int

The type of the thing pointed to by pnVar is int. This is equivalent to saying that if houseAddress
is the address of a house, the thing pointed at by houseAddress must be a house. Amazing, but true.

Pointers to other types of variables are expressed the same way:

 double doubleVar;
double* pdoubleVar = &doubleVar;
*pdoubleVar = 10.0;

A pointer on a Pentium class machine takes 4 bytes no matter what it points to. That is, an address
on a Pentium is 4 bytes long, period.

Passing Pointers to Functions
One of the uses of pointer variables is in passing arguments to functions. To understand why this is
important, you need to understand how arguments are passed to a function. (I touched on this in
Chapter 6, but you're now in a much better place to understand this armed with your new
understanding of pointers.)

Passing by value
By default, arguments are passed to functions by value. This has the somewhat surprising result
that changing the value of a variable in a function does not normally change its value in the calling
function. Consider the following example code segment:

 void fn(int nArg)
{
 nArg = 10;
 // value of nArg at this point is 10
}

void parent(void)
{
 int n1 = 0;
 fn(n1);
 // value of n1 at this point is still 0
}

Here the parent() function initializes the integer variable n1 to 0. The value of n1 is then passed to
fn(). Upon entering the function, nArg is equal to 0, the value passed. fn() changes the value of
nArg to 10 before returning to parent(). Upon returning to parent(), the value of n1 is still 0.

The reason for this behavior is that C++ doesn’t pass a variable to a function. (I’m not even sure
what that would mean.) Instead, C++ passes the value contained in the variable at the time of the
call. That is, the expression is evaluated, even if it is just a variable name, and the result is passed.

In the example, the value of n1, which is 0, was passed to fn(). What the function does with that
value has no effect on n1.

Passing pointer values
Like any other intrinsic type, a pointer may be passed as an argument to a function:

 void fn(int* pnArg)
{
 *pnArg = 10;
}

void parent(void)
{
 int n = 0;

 fn(&n); // this passes the address of i
 // now the value of n is 10
}

In this case, the address of n is passed to the function fn() rather than the value of n. The

significance of this difference is apparent when you consider the assignment within fn().

Suppose n is located at address 0x100. Rather than the value 10, the call fn(&n) passes the value
0x100. Within fn(), the assignment *pnArg = 10 stores the value 10 in the int variable located at
location 0x100, thereby overwriting the value 0. Upon returning to parent(), the value of n is 10
because n is just another name for 0x100.

Passing by reference
C++ provides a shorthand for passing arguments by address — a shorthand that enables you to
avoid having to hassle with pointers. The following declaration creates a variable n1 and a
second reference to the same n1 but with a new name, nRef:

 int n1; // declare an int variable
int& nRef = n1; // declare a second reference to n1

nRef = 1; // now accessing the reference
 // has the same effect as accessing n1;
 // n1 is now equal to 1

A reference variable like nRef must be initialized when it is declared because every subsequent
time that its name is used, C++ will assume that you mean the variable that nRef refers to.

Reference variables find their primary application in function calls:

 void fn(int& rnArg)// declare reference argument
{
 rnArg = 10; // change the value of the variable...
} //...that rnArg refers to

void parent(void)
{
 int n1 = 0;
 fn(n1); // pass a reference to n1
 // here the value of n1 is 10
}

This is called passing by reference. The declaration int& rnArg declares rnArg to be a reference
to an integer argument. The fn() function stores the value 10 into the int location referenced by
rnArg.

 Passing by reference is the same as passing the address of a variable. The reference syntax
puts the onus on C++ to apply the “address of” operator to the reference rather than requiring
the programmer to do so.

 You cannot overload a pass by value function with its pass by reference equivalent. Thus,
you could not define the two functions fn(int) and fn(int&) in the same program. C++ would
not know which one to call.

Constant const Irritation
The keyword const means that a variable cannot be changed once it has been declared and
initialized.

 const double PI = 3.1415926535;

Arguments to functions can also be declared const, meaning that the argument cannot be changed
within the function. However, this introduces an interesting dichotomy in the case of pointer
variables. Consider the following declaration:

 const int* pInt;

Exactly what is the constant here? What can we not change? Is it the variable pInt or the integer
pointed at by pInt? It turns out that both are possible, but this declaration declares a variable
pointer to a constant memory location. Thus the following:

 const int* pInt; // declare a pointer to a const int
int nVar;
pInt = &nVar; // this is allowed
*pInt = 10; // but this is not

We can change the value of pInt, for example, assigning it the address of nVar. But the final
assignment in the example snippet generates a compiler error since we cannot change the const int
pointed at by pInt.

What if I had intended to create a pointer variable with a constant value? The following snippet
shows this in action:

 int nVar;
int * const cpInt = &nVar; // declare a constant pointer
 // to a variable integer
*cpInt = 10; // now this is legal...
cpInt++; // ...but this is not

The variable cpInt is a constant pointer to a variable int. The programmer cannot change the value
of the pointer, but she can change the value of the integer pointed at.

The const-ness can be added via an assignment or initialization but cannot be (readily) cast away.
Thus, the following:

 int nVar = 10;

int pVar = &nVar;
const int* pcVar = pVar; // this is legal
int* pVar2 = pcVar; // this is not

The assignment pcVar = pVar; is okay — this is adding the const restriction. The final assignment
in the snippet is not allowed since it attempts to remove the const-ness restriction of pcVar.

A variable can be implicitly recast as part of a function call, as in the following example:

 void fn(const int& nVar);

void mainFn()
{
 int n;

 fn(10); // calls fn(const int&)
 fn(n); // calls the same function by treating n
} // as if it were const

The declaration fn(const int&) says that the function fn() does not modify the value of its argument.
That’s important when passing a reference to the constant 10. It isn’t important when passing a
reference to the variable n, but it doesn’t hurt anything either.

Finally, const can be used as a discriminator between functions of the same name:

 void fn(const int& nVar);
void fn(int& nVar);

void mainFn()
{
 int n;

 fn(10); // calls the first function
 fn(n); // calls the second function
}

Making Use of a Block of Memory Called the
Heap

The heap is an amorphous block of memory that your program can access as necessary. This
section describes why it exists and how to use it.

Just as it is possible to pass a pointer to a function, it is possible for a function to return a pointer.
A function that returns the address of a double is declared as follows:

 double* fn(void);

However, you must be very careful when returning a pointer. To understand the dangers, you must
know something about variable scope. (No, I don’t mean a variable zoom rifle scope.)

Limited scope
Besides being a mouthwash, scope is the range over which a variable is defined. Consider the
following code snippet:

 // the following variable is accessible to
// all functions and defined as long as the
// program is running(global scope)
int intGlobal;

// the following variable intChild is accessible
// only to the function and is defined only
// as long as C++ is executing child() or a
// function which child() calls (function scope)
void child(void)
{
 int intChild;
}

// the following variable intParent has function
// scope
void parent(void)
{
 int intParent = 0;
 child();

 int intLater = 0;
 intParent = intLater;
}

int main(int nArgs, char* pArgs[])
{
 parent();
}

This program fragment starts with the declaration of a variable intGlobal. This variable exists
from the time the program begins executing until it terminates. We say that intGlobal “has program
scope.” We also say that the variable “goes into scope” even before the function main() is called.

The function main() immediately invokes parent(). The first thing that the processor sees in
parent() is the declaration of intParent. At that point, intParent goes into scope — that is,
intParent is defined and available for the remainder of the function parent().

The second statement in parent() is the call to child(). Once again, the function child() declares a
local variable, this time intChild. The scope of the variable intChild is limited to the function
child(). Technically, intParent is not defined within the scope of child() because child() doesn’t
have access to intParent; however, the variable intParent continues to exist while child() is
executing.

When child() exits, the variable intChild goes out of scope. Not only is intChild no longer
accessible, it no longer exists. (The memory occupied by intChild is returned to the general pool
to be used for other things.)

As parent() continues executing, the variable intLater goes into scope at the declaration. At the
point that parent() returns to main(), both intParent and intLater go out of scope.

Because intGlobal is declared globally in this example, it is available to all three functions and
remains available for the life of the program.

Examining the scope problem
The following code segment compiles without error but doesn’t work (don’t you just hate that?):

 double* child(void)
{
 double dLocalVariable;
 return &dLocalVariable;
}

void parent(void)
{
 double* pdLocal;
 pdLocal = child();
 *pdLocal = 1.0;
}

The problem with this function is that dLocalVariable is defined only within the scope of the
function child(). Thus, by the time the memory address of dLocalVariable is returned from child(),
it refers to a variable that no longer exists. The memory that dLocalVariable formerly occupied is
probably being used for something else.

 This error is very common because it can creep up in a number of ways. Unfortunately,
this error does not cause the program to instantly stop. In fact, the program may work fine
most of the time — that is, the program continues to work as long as the memory formerly
occupied by dLocalVariable is not reused immediately. Such intermittent problems are the
most difficult ones to solve.

Providing a solution using the heap
The scope problem originated because C++ took back the locally defined memory before the

programmer was ready. What is needed is a block of memory controlled by the programmer. She
can allocate the memory and put it back when she wants to — not because C++ thinks it’s a good
idea. Such a block of memory is called the heap.

Heap memory is allocated using the new keyword followed by the type of object to allocate. The
new command breaks a chunk of memory off the heap big enough to hold the specified type of
object and returns its address. For example, the following allocates a double variable off the
heap:

 double* child(void)
{
 double* pdLocalVariable = new double;
 return pdLocalVariable;
}

This function now works properly. Although the variable pdLocalVariable goes out of scope
when the function child() returns, the memory to which pdLocalVariable refers does not. A
memory location returned by new does not go out of scope until it is explicitly returned to the heap
using the keyword delete, which is specifically designed for that purpose:

 void parent(void)
{
 // child() returns the address of a block
 // of heap memory
 double* pdMyDouble = child();

 // store a value there
 *pdMyDouble = 1.1;

 // ...

 // now return the memory to the heap
 delete pdMyDouble;
 pdMyDouble = 0;

 // ...
}

Here the pointer returned by child() is used to store a double value. After the function is finished
with the memory location, it is returned to the heap. The function parent() sets the pointer to 0
after the heap memory has been returned — this is not a requirement, but it is a very good idea. If
the programmer mistakenly attempts to store something in * pdMyDouble after the delete, the
program will crash immediately with (I hope) a meaningful error message.

You can use new to allocate arrays from the heap as well, but you must return an array using the
delete[] keyword:

 int* nArray = new int[10];

nArray[0] = 0;

delete[] nArray;

 Technically new int[10] invokes the new[] operator but it works the same as new.

I have more to say about the relationship between pointers and arrays in Chapter 9.

Chapter 9
Taking a Second Look at C++ Pointers

In This Chapter
 Performing arithmetic operations on character pointers
 Examining the relationship between pointers and arrays
 Increasing program performance
 Extending pointer operations to different pointer types
 Explaining the arguments to main() in our C++ program template

C++ allows the programmer to operate on pointer variables much as she would on simple types of
variables. (The concept of pointer variables is introduced in Chapter 8.) How and why this is
done, along with its implications, are the subjects of this chapter.

Defining Operations on Pointer Variables
Some of the same arithmetic operators I cover in Chapter 3 can be applied to pointer types. This
section examines the implications of applying these operators both to pointers and to the array
types (I discuss arrays in Chapter 7). Table 9-1 lists the three fundamental operations that are
defined on pointers. In Table 9-1, pointer, pointer1, and pointer2 are all of some pointer type, say
char*;, and offset is an integer, for example, long. C++ also supports the other operators related
to addition and subtraction, such as ++ and +=., although they are not listed in Table 9-1.

Table 9-1 The Three Basic Operations Defined on Pointer Types
Operation Result Meaning

pointer + offset pointer Calculate the address of the object offset entries from pointer.

pointer – offset pointer The opposite of addition.

pointer2 – pointer1 offset Calculate the number of entries between pointer2 and pointer1.

The neighborhood memory model is useful to explain how pointer arithmetic works. Consider a
city block in which all houses are numbered sequentially. The house at 123 Main Street has 122
Main Street on one side and 124 Main Street on the other.

Now it’s pretty clear that the house four houses down from 123 Main Street must be 127 Main
Street; thus, you can say 123 Main + 4 = 127 Main. Similarly, if I were to ask how many houses
there are from 123 Main to 127 Main, the answer would be four — 127 Main – 123 Main = 4.
(Just as an aside, a house is zero houses from itself: 123 Main – 123 Main = 0.)

But it makes no sense to ask how far away from 123 Main Street is 4 or what the sum of 123 Main
and 127 Main is. In similar fashion, you can’t add two addresses. Nor can you multiply an
address, divide an address, square an address, or take the square root — you get the idea. You can
perform any operation that can be converted to addition or subtraction. For example, if you
increment a pointer to 123 Main Street, it now points to the house next door (at 124 Main, of
course!).

Reexamining arrays in light of pointer variables
Now return to the wonderful array for just a moment. Consider the case of an array of 32 1-byte
characters called charArray. If the first byte of this array is stored at address 0x100, the array will
extend over the range 0x100 through 0x11f. charArray[0] is located at address 0x100,
charArray[1] is at 0x101, charArray[2] at 0x102, and so on.

After executing the expression

 char* ptr = &charArray[0];

the pointer ptr contains the address 0x100. The addition of an integer offset to a pointer is defined
such that the relationships shown in Table 9-2 are true. Table 9-2 also demonstrates why adding
an offset n to ptr calculates the address of the nth element in charArray.

Table 9-2 Adding Offsets
Offset Result Is the Address Of

+ 0 0x100 charArray[0]

+ 1 0x101 charArray[1]

+ 2 0x102 charArray[2]

… … …

+ n 0x100 + n charArray[n]

The addition of an offset to a pointer is identical to applying an index to an array.

Thus, if

 char* ptr = &charArray[0];

then

 *(ptr + n) ← corresponds with → charArray[n]

 Because * has higher precedence than addition, * ptr + n adds n to the character that ptr
points to. The parentheses are needed to force the addition to occur before the indirection.
The expression *(ptr + n) retrieves the character pointed at by the pointer ptr plus the offset
n.

In fact, the correspondence between the two forms of expression is so strong that C++ considers
array[n] nothing more than a simplified version of *(ptr + n), where ptr points to the first element
in array.

 array[n] -- C++ interprets as → *(&array[0] + n)

To complete the association, C++ takes a second shortcut. If given

 char charArray[20];

charArray is defined as &charArray[0];. That is, the name of an array without a subscript present
is the address of the array itself. Thus, you can further simplify the association to

 array[n] -- C++ interprets as → *(array + n)

 The type of charArray is actually char const*; that is, “constant pointer to a character”
since its address cannot be changed.

Applying operators to the address of an array
The correspondence between indexing an array and pointer arithmetic is useful. For example, a
displayArray() function used to display the contents of an array of integers can be written as
follows:

 // displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{
 cout << "The value of the array is:\n";

 for(int n = 0; n < nSize; n++)
 {
 cout << n << ": " << intArray[n] << "\n";
 }
 cout << endl;
}

This version uses the array operations with which you are familiar. A pointer version of the same
appears as follows:

 // displayArray - display the members of an
// array of length nSize
void displayArray(int intArray[], int nSize)
{
 cout << "The value of the array is:\n";

 // initialize the pointer pArray with the
 // the address of the array intArray
 int* pArray = intArray;
 for(int n = 0; n < nSize; n++, pArray++)
 {
 cout << n << ": " << *pArray << "\n";
 }
 cout << endl;
}

The new displayArray() begins by creating a pointer to an integer pArray that points at the first
element of intArray.

 The name intArray by itself is of type int* and refers to the address of the array.

The function then loops through each element of the array. On each loop, displayArray() outputs
the current integer (that is, the integer pointed at by pArray) before incrementing the pointer to the
next entry in intArray. displayArray() can be tested using the following version of main():

 int main(int nNumberofArgs, char* pszArgs[])
{
 int array[] = {4, 3, 2, 1};
 displayArray(array, 4);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from this program is

 The value of the array is:
0: 4
1: 3
2: 2
3: 1

Press Enter to continue...

You may think this pointer conversion is silly; however, the pointer version of displayArray() is
actually more common than the array version among C++ programmers in the know. For some
reason, C++ programmers don’t seem to like arrays, but they love pointer manipulation.

The use of pointers to access arrays is nowhere more common than in the accessing of character
arrays.

Expanding pointer operations to a string
A null-terminated string is simply a constant character array whose last character is a null. C++
uses the null character at the end to serve as a terminator. This null-terminated array serves as a
quasi-variable type of its own. (See Chapter 7 for an explanation of null-terminated string arrays.)
Often C++ programmers use character pointers to manipulate such strings. The following code
examples compare this technique to the earlier technique of indexing in the array.

Character pointers enjoy the same relationship with a character array that any other pointer and
array share. However, the fact that strings end in a terminating null makes them especially
amenable to pointer-based manipulation, as shown in the following DisplayString program:

 // DisplayString - display an array of characters both
// using a pointer and an array index
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // declare a string
 const char* szString = "Randy";
 cout << "The array is '" << szString << "'" << endl;

 // display szString as an array
 cout << "Display the string as an array: ";
 for(int i = 0; i < 5; i++)
 {
 cout << szString[i];
 }
 cout << endl;

 // now using typical pointer arithmetic
 cout << "Display string using a pointer: ";
 const char* pszString = szString;
 while(*pszString)
 {
 cout << *pszString;
 pszString++;
 }
 cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program first makes its way through the array szString by indexing into the array of
characters. The for loop chosen stops when the index reaches 5, the length of the string.

The second loop displays the same string using a pointer. The program sets the variable pszString
equal to the address of the first character in the array. It then enters a loop that will continue until
the char pointed at by pszString is equal to false — in other words, until the character is a null.

 The integer value 0 is interpreted as false — all other values are true.

The program outputs the character pointed at by pszString and then increments the pointer so that it
points to the next character in the string before being returned to the top of the loop.

 The dereference and increment can be (and usually are) combined into a single expression
as follows:

 cout << *pszString++;

The output of the program appears as follows:

 The array is 'Randy'
Display the string as an array: Randy
Display string using a pointer: Randy
Press Enter to continue...

Justifying pointer-based string manipulation
The sometimes-cryptic nature of pointer-based manipulation of character strings might lead the
reader to wonder, “Why?” That is, what advantage does the char* pointer version have over the
easier-to-read index version?

The answer is partially (pre-)historic and partially human nature. When C, the progenitor to C++,
was invented, compilers were pretty simplistic. These compilers could not perform the
complicated optimizations that modern compilers can. As complicated as it might appear to the
human reader, a statement such as *pszString++ could be converted into an amazingly small
number of machine-level instructions even by a stupid compiler.

Older computer processors were not very fast by today’s standards. In the early days of C, saving

a few computer instructions was a big deal. This gave C a big advantage over other languages of
the day, notably Fortran, which did not offer pointer arithmetic.

In addition to the efficiency factor, programmers like to generate clever program statements. After
C++ programmers learn how to write compact and cryptic but efficient statements, there is no
getting them back to accessing arrays with indices.

 Do not generate complex C++ expressions to create a more efficient program. There is no
obvious relationship between the number of C++ statements and the number of machine
instructions generated.

Applying operators to pointer types other than char
It is not too hard to convince yourself that szTarget + n points to szTarget [n] when szTarget is an
array of chars. After all, a char occupies a single byte. If szTarget is stored at 0x100, szTarget[5]
is located at 0x105.

It is not so obvious that pointer addition works in exactly the same way for an int array because an
int takes 4 bytes for each char’s 1 byte (at least it does on a 32-bit Intel processor). If the first
element in intArray were located at 0x100, then intArray[5] would be located at 0x114 (0x100 +
(5 * 4) = 0x114) and not 0x104.

Fortunately for us, array + n points at array[n] no matter how large a single element of array
might be. C++ takes care of the element size for us — it’s clever that way.

Once again, the dusty old house analogy works here as well. (I mean dusty analogy, not dusty
house.) The third house down from 123 Main is 126 Main, no matter how large the buildings might
be, whether they're bungalows or mansions.

Strings have me constantly confused
You may have noticed that I slipped a const declaration into the earlier DisplayString example program. This was
necessary to account for differences between an array and a pointer. A string such as “this is a string” is considered a
constant address of a string of constant characters. In other words, neither the address of the string nor the characters
themselves can be changed. Why is that?

One problem is that you don’t know where C++ stores its local strings nor do you know how many times it reuses the
same string. Often C++ stores constant strings in the same memory locations as source code, and it very often reuses
the same string in several places in the program. For this reason, C++ often marks constant strings as unwritable.

The initialization of a pointer variable is similar to initializing any other simple variable:

int i = 1;
const char* pString = "this is a string";

Both declarations initialize the variable on the left with the constant value on the right. However, since pString points
directly at the immutable string “this is a string” it’s important that pString be declared const char*, that is, a pointer to
constant characters.

The equivalent array is more complicated than it first appears:

char sChars[] = "this is a string"; // declare and init array
This declares and allocates memory for an array sChars[] and then copies the initialization string into it. Thus, the letter t
that is the first character in sChars is not the same letter t that makes up the immutable initialization string.

In fact, the preceding is shorthand for the more long-winded but descriptive

char sChars[17]; // declare the array
and...
strcpy(sChars, "this is a string"); // ...then initialize it

Remember that strcpy() copies the string of characters represented by the second argument into the array pointed at by
the first argument. And also remember to allocate space for the terminating null.

Contrasting a pointer with an array
There are some differences between an array and a pointer. For one, the array allocates space for
the data, whereas the pointer does not, as shown here:

 void arrayVsPointer()
{
 // allocate storage for 128 characters
 char charArray[128];

 // allocate space for a pointer but not for
 // the thing pointed at
 char* pArray;
}

Here charArray allocates room for 128 characters. pArray allocates only 4 bytes — the amount of
storage required by a pointer.

Consider the following example:

 char charArray[128];
charArray[10] = '0'; // this works fine

char* pArray;
pArray[10] = '0'; // this writes into random location

The expression pArray[10] is syntactically equivalent to charArray[10], but pArray has not been
initialized so pArray[10] references some random (garbage) location in memory.

 The mistake of referencing memory with an uninitialized pointer variable is generally
caught by the CPU when the program executes, resulting in the dreaded segment violation
error that from time to time issues from your favorite applications under your favorite, or not-
so-favorite, operating system. This problem is not generally the fault of the processor or the
operating system, but of the application.

 Another implication of this difference is that you can use a range-based for loop on an
array where the size of the array is known but not on a pointer where the number of elements
is not known:

 char charArray[128];
for(char& c : charArray) { c = '\0';} // initialize array

char* pArray = charArray;
for(char& c : pArray) {c = '\0';} //not legal

The first range-based for loop can be used to initialize the charArray to null characters. The
second for loop does not compile, however. Even though pArray is assigned the address of the
character array with its 128 characters, C++ doesn't keep that size information with the pointer, so
it doesn't know how far to iterate in the range-based for loop. (See Chapter 5 for a description of
the range-based for loop.)

A second difference between a pointer and the address of an array is that charArray is a constant,
whereas pArray is not. Thus, the following for loop used to initialize the array charArray does not
work:

 char charArray[10];
for (int i = 0; i < 10; i++)
{
 *charArray = '\0'; // this makes sense...
 charArray++; // ...this does not
}

The expression charArray++ makes no more sense than 10++. The following version is correct:

 char charArray[10];
char* pArray = charArray;
for (int i = 0; i < 10; i++)
{
 *pArray = '\0'; // this works great
 pArray++; // this is ok - not a const pointer
}

When Is a Pointer Not?
C++ is completely quiet about what is and isn’t a legal address, with one exception. C++
predefines the constant nullptr with the following properties:

It is a constant value.
It can be assigned to any pointer type.

It evaluates to false.
It is never a legal address.

The constant nullptr is used to indicate when a pointer has not been initialized. It is also often
used to indicate the last element in an array of pointers in much the same way that a null character
is used to terminate a character string.

 Actually the keyword nullptr was introduced in the 2011 standard. Before that, the
constant 0 was used to indicate a null pointer.

It is a safe practice to initialize pointers to the nullptr (or 0 if your compiler doesn’t support
nullptr yet). You should also clear out the contents of a pointer to heap memory after you invoke
delete to avoid deleting the same memory block twice:

 delete pHeap; // return memory to the heap
pHeap = nullptr; // now clear out the pointer

 Passing the same address to delete twice will always cause your program to crash.
Passing a nullptr (or 0) to delete has no effect.

Declaring and Using Arrays of Pointers
If pointers can point to arrays, it seems only fitting that the reverse should be true. Arrays of
pointers are a type of array of particular interest.

Just as arrays may contain other data types, an array may contain pointers. The following declares
an array of pointers to ints:

 int* pInts[10];

Given the preceding declaration, pInts[0] is a pointer to an int value. Thus, the following is true:

 void fn()
{
 int n1;
 int* pInts[3];
 pInts[0] = &n1;
 *pInts[0] = 1;
}

or

 void fn()
{

 int n1, n2, n3;
 int* pInts[3] = {&n1, &n2, &n3};
 for (int i = 0; i < 3; i++)
 {
 *pInts[i] = 0;
 }
}

or even

 void fn()
{
 int* pInts[3] = {(new int),
 (new int),
 (new int)};
 for (int i = 0; i < 3; i++)
 {
 *pInts[i] = 0;
 }
}

The latter declares three int objects off the heap. This type of declaration isn’t used very often
except in the case of an array of pointers to character strings. The following two examples show
why arrays of character strings are useful.

Utilizing arrays of character strings
Suppose I need a function that returns the name of the month corresponding to an integer argument
passed to it. For example, if the program is passed a 1, it returns a pointer to the string
“January”; if 2, it reports “February”, and so on. The month 0 and any numbers greater than 12
are assumed to be invalid. I could write the function as follows:

 // int2month() - return the name of the month
const char* int2month(int nMonth)
{
 const char* pszReturnValue;

 switch(nMonth)
 {
 case 1: pszReturnValue = "January";
 break;
 case 2: pszReturnValue = "February";
 break;
 case 3: pszReturnValue = "March";
 break;
 // ...and so forth...

 default: pszReturnValue = "invalid";
 }
 return pszReturnValue;
}

 The switch() control command is like a sequence of if statements.

A more elegant solution uses the integer value for the month as an index into an array of pointers to
the names of the months. In use, this appears as follows:

 // define an array containing the names of the months
const char *const pszMonths[] = {"invalid",
 "January",
 "February",
 "March",
 "April",
 "May",
 "June",
 "July",
 "August",
 "September",
 "October",
 "November",
 "December"};

// int2month() - return the name of the month
const char* int2month(int nMonth)
{
 // first check for a value out of range
 if (nMonth < 1 || nMonth > 12)
 {
 return "invalid";
 }

 // nMonth is valid - return the name of the month
 return pszMonths[nMonth];
}

Here int2month() first checks to make sure that nMonth is a number between 1 and 12, inclusive
(the default clause of the switch statement handled that in the previous example). If nMonth is
valid, the function uses it as an offset into an array containing the names of the months.

 This technique of referring to character strings by index is especially useful when writing
your program to work in different languages. For example, a program may declare a
ptrMonths of pointers to Julian months in different languages. The program would initialize
ptrMonth to the proper names, be they in English, French, or German (for example), at
execution time. In that way, ptrMonth[1] points to the correct name of the first Julian month,
irrespective of the language.

A program that demonstrates int2Month() is included in the extras at
www.dummies.com/extras/cplusplus as DisplayMonths.

Accessing the arguments to main()
Now the truth can be told — what are all those funny argument declarations to main() in our
program template? The second argument to main() is an array of pointers to null-terminated
character strings. These strings contain the arguments to the program. The arguments to a program
are the strings that appear with the program name when you launch it. These arguments are also
known as parameters. The first argument to main() is the number of parameters passed to the
program. For example, suppose that I entered the following command at the command prompt:

 MyProgram file.txt /w

The operating system executes the program contained in the file MyProgram (or MyProgram.exe
on a Windows machine), passing it the arguments file.txt and /w.

Consider the following simple program:

 // PrintArgs - write the arguments to the program
// to the standard output
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // print a warning banner
 cout << "The arguments to "
 << pszArgs[0] << " are:\n";

 // now write out the remaining arguments
 for (int i = 1; i < nNumberofArgs; i++)
 {
 cout << i << ":" << pszArgs[i] << "\n";
 }

http://www.dummies.com/extras/cplusplus

 // that's it
 cout << "That's it" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

As always, the function main() accepts two arguments. The first argument is an int that I have been
calling (quite descriptively, as it turns out) nNumberofArgs. This variable is the number of
arguments passed to the program. The second argument is an array of pointers of type char* that I
have been calling pszArgs.

Accessing program arguments DOS-style
If I were to execute the PrintArgs program from the command prompt window as

 PrintArgs arg1 arg2 arg3 /w

nArgs would be 5 (one for each argument). The first argument is the name of the program itself.
This could be anywhere from the simple “PrintArgs” to the slightly more complicated
“PrintArgs.exe” to the full path — the C++ standard doesn’t specify. The environment can even
supply a null string “ ” if it doesn’t have access to the name of the program.

The remaining elements in pszArgs point to the program arguments. For example, the element
pszArgs[1] points to “arg1” and pszArgs[2] to “arg2”. Because Windows does not place any
significance on “/w”, this string is also passed as an argument to be processed by the program.

 Actually, C++ includes one final value. The last value in the array, the one after the pointer
to the last argument of the program, contains nullptr.

To demonstrate how argument passing works, you need to build the program from within
Code::Blocks and then execute the program directly from a command prompt. First ensure that
Code::Blocks has built an executable by opening the PrintArgs projects and choosing
Build⇒Rebuild.

Next, open a command prompt window. If you are running Unix or Linux, you’re already there. If
you are running Windows, choose Programs⇒Accessories⇒Command Prompt to open an 80-
character-wide window with a command prompt.

Now you need to use the CD command to navigate to the directory where Code::Blocks placed the
PrintArgs program. If you used the default settings when installing Code::Blocks, that directory
will be C:\CPP_Programs_from_Book\Chap09\PrintArgs\bin\Debug.

You can now execute the program by typing its name followed by your arguments. The following
shows what happened when I did it in Windows 7:

 C:\Users\Randy>cd
\cpp_programs_from_book\chap09\printargs\bin\debug

C:\CPP_Programs_from_book\Chap09\PrintArgs\bin\Debug>PrintArgs
arg1 arg2 arg3 /n
The arguments to PrintArgs are:
1:arg1
2:arg2
3:arg3
4:/n
That's it
Press Enter to continue...

Wild cards such as *.* may or may not be expanded before being passed to the program — the
standard is silent on this point. The Code::Blocks/gcc compiler does perform such expansion on
Windows, as the following example shows:

 C:\CPP_Programs_from_book\Chap09\PrintArgs>bin\debug\PrintArgs
.
The arguments to bin\debug\PrintArgs are:
1:bin
2:main.cpp
3:obj
4:PrintArgs.cbp
That's it
Press Enter to continue...

Here you see the names of the files in the current directory in place of the *.* that I entered.

 Wild-card expansion is performed under all forms of Linux, as well as on the Macintosh.

Accessing program arguments Code::Blocks–style
You can add arguments to your program when you execute it from Code::Blocks as well. Choose
Project⇒Set programs' arguments from within Code::Blocks. Enter the command line you would
like in the Program arguments window.

Accessing program arguments Windows-style
Windows passes arguments as a means of communicating with your program as well. Try the
following experiment: Build your program as you would normally. Find the executable file using
Windows Explorer. (As noted earlier, the default location for the PrintArgs program is
C:\CPP_Programs_from_book\Chap09\PrintArgs\bin\Debug.) Now grab a file and drop it onto

the filename. (It doesn’t matter what file you choose because the program won’t hurt it anyway.)
Bam! The PrintArgs program starts right up, and the name of the file that you dropped on the
program appears.

Now try again, but drop several files at once. Select multiple filenames while pressing the Ctrl
key or by using the Shift key to select a group. Now drag the lot of them onto PrintArgs.exe and let
go. The name of each file appears as output.

I dropped a few of the files that appear in my \Program Files\WinZip folder onto PrintArgs as an
example:

 The arguments to
C:\CPP_Programs_from_book\Chap09\PrintArgs\bin\Debug\PrintArgs.exe
are:
1:C:\Program Files\WinZip\VENDOR.TXT
2:C:\Program Files\WinZip\WHATSNEW.TXT
3:C:\Program Files\WinZip\WINZIP.CHM
4:C:\Program Files\WinZip\WINZIP.TXT
5:C:\Program Files\WinZip\WINZIP32.EXE
6:C:\Program Files\WinZip\WZ.COM
That's it
Press Enter to continue...

Notice that the name of each file appears as a single argument, even though the filename may
include spaces. Also note that Windows passes the full pathname of the file.

Chapter 10
The C++ Preprocessor

In This Chapter
 Including source files
 Defining constants and macros
 Enumerating alternatives to constants
 Inserting compile-time checks
 Simplifying declarations via typedef

You only thought that all you had to learn was C++. It turns out that C++ includes a preprocessor
that works on your source files before the “real C++ compiler” ever gets to see it. Unfortunately,
the syntax of the preprocessor is completely different than that of C++ itself.

Before you despair, however, let me hasten to add that the preprocessor is very basic and the C++
’11 standard has added a number of features that make the preprocessor almost unnecessary.
Nevertheless, if the conversation turns to C++ at your next Coffee Club meeting, you’ll be
expected to understand the preprocessor.

What Is a Preprocessor?
Up until now, you may have thought of the C++ compiler as munching on your source code and
spitting out an executable program in one step, but that isn’t quite true.

First, the preprocessor makes a pass through your program looking for preprocessor instructions.
The output of this preprocessor step is an intermediate file that has all the preprocessor commands
expanded. This intermediate file gets passed to the C++ compiler for processing. The output from
the C++ compiler is an object file that contains the machine instruction equivalent to your C++
source code. During the final step, a separate program known as the linker combines a set of
standard libraries with your object file (or files, as we’ll see in Chapter 21) to create an
executable program. (More on the standard library in the next section of this chapter.)

 Object files normally carry the extension .o. Executable programs always carry the
extension .exe in Windows and have no extension under Linux or Mac OS X. Code::Blocks
stores the object and executable files in their own folders. For example, if you’ve already
built the IntAverage program from Chapter 2, you will have on your hard disk a folder
C:\CPP_Programs_from_book\IntAverage\obj\Debug containing main.o and a folder
C:\CPP_Programs_from_book\IntAverage\bin\Debug that contains the executable program.

All preprocessor commands start with a # symbol in column 1 and end with the newline.

 Like almost all rules in C++, this rule has an exception. You can spread a preprocessor
command across multiple lines by ending the line with a backslash character: \. We won’t
have any preprocessor commands that are that complicated, however.

In this book, we’ll be working with three preprocessor commands:

#include includes the contents of the specified file in place of the #include statement.
#define defines a constant or macro.
#if includes a section of code in the intermediary file if the following condition is true.

Each of these preprocessor commands is covered in the following sections.

Including Files
The C++ standard library consists of functions that are basic enough that almost everyone needs
them. It would be silly to force every programmer to have to write them for herself. For example,
the I/O functions, which we have been using to read input from the keyboard and write out to the
console, are contained in the standard library.

However, C++ requires a prototype declaration for any function you call, whether it’s in a library
or not (see Chapter 6 if that doesn’t make sense to you). Rather than force the programmer to type
all these declarations by hand, the library authors created include files that contain little more than
prototype declarations. All you have to do is #include the source file that contains the prototypes
for the library routines you intend to use.

Take the following simple example. Suppose I had created a library that contains the trigonometric
functions sin(), cosin(), tan(), and a whole lot more. I would likely create an include file mytrig
with the following contents to go along with my standard library:

 // include prototype declarations for my library
double sin(double x);
double cosin(double x);
double tan(double x);
// ...more prototype declarations...

Any program that wanted to make use of one of these math functions would #include that file,
enclosing the name of the include file either in brackets or quotes as in

 #include <mytrig>

or

 #include "mytrig"

 The difference between the two forms of #include is a matter of where the preprocessor
goes to look for the mytrig file. When the file is enclosed in quotes, the preprocessor
assumes that the include file is locally grown, so it starts looking for the file in the same
directory in which it found the source file. If it doesn’t find the file there, it starts looking in
its own include file directories. The preprocessor assumes that include files in angle brackets
are from the C++ library, so it skips looking in the source file directory and goes straight to
the standard include file folders. Use quotes for any include file that you create and angle
brackets for C++ library include files.

Thus, you might write a source file like the following:

 // MyProgram - is very intelligent
#include "mytrig"

int main(int nArgc, char* pArguments[])
{
 cout << "The sin of .5 is " << sin(0.5) << endl;
 return 0;
}

The C++ compiler sees the following intermediary file after the preprocessor gets finished
expanding the #include:

 // MyProgram - is very intelligent
// include prototype declarations for my library
double sin(double x);
double cosin(double x);
double tan(double x);
// ...more prototype declarations...

int main(int nArgc, char* pArguments[])
{
 cout << "The sin of .5 is " << sin(0.5) << endl;
 return 0;
}

 Historically, the convention was to end include files with .h. C still uses that standard.
However, C++ dropped the extension when it revamped the include file structure. Now, C++
standard include files have no extension.

 Playing in your own name sandbox
(This is truly technical, so feel free to skip this sidebar and come back to it later.) The authors of the C++ standard worry
a lot about name collisions. For example, besides my mathematical function log(x) that returns the logarithm of x,
suppose in another context I had written a function log(x) that writes status information to a system log. Clearly, two
different functions with the same arguments can’t coexist in one program. This is known as a name collision.

To avoid this, C++ allows the programmer to bundle declarations into a namespace using the keyword of the same
name:

namespace Mathematics
{
 double log(double x)
 {
 // ...the definition of the function...
 }
}
namespace SystemLog
{
 int log(double x)
 {
 // ...log the value to file...
 }
}

The namespace becomes part of the extended name of the function. Thus, the following code snippet actually logs the
logarithm of a value:

void myFunc(double x)
{
 // invoke the logarithm function...
 double dl = Mathematics::log(x);

 // ...now log it to disk
 SystemLog::log(dl);
}

Fortunately, you don’t have to specify the namespace every single time. The keyword using allows the programmer to
specify a default namespace for a given function:

using double Mathematics::log(double);
void myFunc(double x)
{
 // the default is the mathematics version...
 double dl = log(x);

 // ...however, the other version is still accessible by
 // explicitly specifying the namespace

 SystemLog::log(dl);
}

You can automatically default every declaration within a namespace:

using namespace Mathematics;
void myFunc(double x)
{
 // look in the Mathematics namespace first...
 double dl = log(x);

 // ...however, the other version is still accessible by
 // explicitly specifying the namespace
 SystemLog::log(dl);
}

See the program NamespaceExample in the extras at www.dummies.com/extras/cplusplus for an example of
the use of namespaces.

The standard library functions reside in the std namespace; the statement using namespace std; included at the
beginning of each of the programs in this book gives the programs access to the standard library functions without the
need to specify the namespace explicitly.

#Defining Things
The preprocessor also allows the programmer to #define expressions that get expanded during the
preprocessor step. For example, you can #define a constant to be used throughout the program.

 In usage, you pronounce the # sign as “pound,” so you say “pound-define a constant” to
distinguish from defining a constant in some other way.

 #define TWO_PI 6.2831852

This makes the following statement much easier to understand:

 double diameter = TWO_PI * radius;

than the equivalent expression, which is actually what the C++ compiler sees after the
preprocessor has replaced TWO_PI with its definition:

 double diameter = 6.2831852 * radius;

Another advantage is the ability to #define a constant in one place and use it everywhere. For
example, I might include the following #define in an include file:

 #define MAX_NAME_LENGTH 512

Throughout the program, I can truncate the names that I read from the keyboard to a common and

http://www.dummies.com/extras/cplusplus

consistent MAX_NAME_LENGTH. Not only is this easier to read, but it also provides a single
place in the program to change should I want to increase or decrease the maximum name length
that I choose to process.

The preprocessor also allows the program to #define function-like macros with arguments that are
expanded when the definition is used:

 #define SQUARE(X) X * X

In use, such macro definitions look a lot like functions:

 // calculate the area of a circle
double dArea = HALF_PI * SQUARE(dRadius);

Remember that the C++ compiler actually sees the file generated from the expansion of all macros.
This can lead to some unexpected results. Consider the following code snippets (these are all
taken from the program MacroConfusion, which is included among the extra programs at
www.dummies.com/extras/cplusplus):

 int nSQ = SQUARE(2);
cout << "SQUARE(2) = " << nSQ << endl;

Reassuringly, this generates the expected output:

 SQUARE(2) = 4

However, the following lines

 int nSQ = SQUARE(1 + 2);
cout << "SQUARE(1 + 2) = " << nSQ << endl;

generate the surprising result

 SQUARE(1 + 2) = 5

The preprocessor simply replaced X in the macro definition with 1 + 2. What the C++ compiler
actually sees is

 int nSQ = 1 + 2 * 1 + 2;

Since multiplication has higher precedence than addition, this is turned into 1 + 2 + 2 which, of
course, is 5. This confusion could be solved by liberal use of parentheses in the macro definition:

 #define SQUARE(X) ((X) * (X))

This version generates the expected

 SQUARE(1 + 2) → ((1 + 2) * (1 + 2)) → 9

However, some unexpected results cannot be fixed no matter how hard you try. Consider the
following snippet:

http://www.dummies.com/extras/cplusplus

 int i = 2;
cout << "i = " << i << endl;
int nSQ = SQUARE(i++);
cout << "SQUARE(i++) = " << nSQ << endl;
cout << "now i = " << i << endl;

This generates the following:

 i = 3;
SQUARE(i++) = 9
now i = 5

The value generated by SQUARE is correct, but the variable i has been incremented twice. The
reason is obvious when you consider the expanded macro:

 int i = 3;
nSQ = i++ * i++;

Since autoincrement has precedence, the two i++ operations are performed first. Both return the
current value of i, which is 3. These two values are then multiplied together to return the expected
value of 9. However, i is then incremented twice to generate a resulting value of 5.

Okay, how about not #defining things?
The sometimes unexpected results from the preprocessor have created heartburn for the fathers
(and mothers) of C++ almost from the beginning. C++ has included features over the years to make
most uses of #define unnecessary.

For example, C++ defines the inline function to replace the macro. This looks just like any other
function declaration with the addition of the keyword inline tacked to the front:

 inline int SQUARE(int x) { return x * x; }

This inline function definition looks very much like the previous macro definition for SQUARE() (I
have written this definition on one line to highlight the similarities). However, an inline function is
processed by the C++ compiler rather than by the preprocessor. This definition of SQUARE() does
not suffer from any of the strange effects noted previously.

 The inline keyword is supposed to suggest to the compiler that it “expand the function
inline” rather than generate a call to some code somewhere to perform the operation. This
was to satisfy the speed freaks, who wanted to avoid the overhead of performing a function
call compared to a macro definition that generates no such call. The best that can be said is
that inline functions may be expanded in place, but then again, they may not. There’s no way
to be sure without performing detailed timing analysis or examining the machine code output
by the compiler.

 C++ allows programmers to use a variable declared const to take the place of a #define
constant so long as the value of the constant is spelled out at compile time:

 const int MAX_NAME_LENGTH = 512;
int szName[MAX_NAME_LENGTH];

 The ’11 standard goes so far as to allow you to declare a function to be a constexpr:

 constexpr int square(int n1, int n2)
 {return n1 * n1 + n2 * n2;}

This makes a declaration like the following legal:

 int matrix[square(5)];

However, '11 puts a lot of significant restrictions on what can go into a const expression. For
example, such a function is pretty much limited to a single line.

 The '14 standard loosens the rules concerning const expressions quite a bit. In general, a
function can be declared a constexpr if all of the sub-expressions can be calculated at
compile time.

Enumerating other options
C++ provides a mechanism for defining constants of a separate, user-defined type. Suppose, for
example, that I were writing a program that manipulated States of the Union. I could refer to the
states by their name, such as “Texas” or “North Dakota.” In practice, this is not convenient since
repetitive string comparisons are computationally intensive and subject to error.

I could define a unique value for each state as follows:

 #define DC_OR_TERRITORY 0
#define ALABAMA 1
#define ALASKA 2
#define ARKANSAS 3
// ...and so on...

Not only does this avoid the clumsiness of comparing strings; it allows me to use the name of the
state as an index into an array of properties such as population:

 // increment the population of ALASKA (they need it)
population[ALASKA]++;

A statement such as this is much easier to understand than the semantically identical

population[2]++. This is such a common thing to do that C++ allows the programmer to define
what’s known as an enumeration:

 enum STATE {DC_OR_TERRITORY, // gets 0
 ALABAMA, // gets 1
 ALASKA, // gets 2
 ARKANSAS,
 // ...and so on...

Each element of this enumeration is assigned a value starting at 0, so DC_OR_TERRITORY is
defined as 0, ALABAMA is defined as 1, and so on. You can override this incremental sequencing
by using as assign statement as follows:

 enum STATE {DC,
 TERRITORIES = 0,
 ALABAMA,
 ALASKA,
 // ...and so on...

This version of STATE defines an element DC, which is given the value 0. It then defines a new
element TERRITORIES, which is also assigned the value 0. ALABAMA picks up with 1 just as
before.

 The ’11 standard extends enumerations by allowing the programmer to create a user-
defined enumerated type as follows (note the addition of the keyword class in the snippet):

 enum class STATE {DC,
 TERRITORIES = 0,
 ALABAMA,
 ALASKA,
 // ...and so on...

This declaration creates a new type STATE and assigns it 52 members (ALABAMA through
WYOMING plus DC and TERRITORIES). The programmer can now use STATE as she would any
other variable type. A variable can be declared to be of type STATE:

 STATE s = STATE::ALASKA;

Function calls can be differentiated by this new type:

 int getPop(STATE s); // return population
int setPop(STATE s, int pop); // set the population

The type STATE is not just another word for int: Arithmetic is not defined for members of type
STATE. The following attempt to use STATE as an index into an array is not legal:

 int getPop(STATE s)
{
 return population[s]; // not legal
}

However, the members of STATE can be converted to their integer equivalent (0 for DC and
TERRITORIES, 1 for ALABAMA, 2 for ALASKA, and so on) through the application of a cast:

 int getPop(STATE s)
{
 return population[(int)s]; // is legal
}

Including Things #if I Say So
The third major class of preprocessor statement is the #if, which is a preprocessor version of the
C++ if statement:

 #if constexpression
// included if constexpression evaluates to other than 0
#else
// included if constexpression evaluates to 0
#endif

This is known as conditional compilation because the set of statements between the #if and the
#else or #endif are included in the compilation only if a condition is true. The constexpression
phrase is limited to simple arithmetic and comparison operators. That’s okay because anything
more than an equality comparison and the occasional addition is rare.

For example, the following is a common use for #if. I can include the following definition within
an include file with a name such as LogMessage:

 #if DEBUG == 1
inline void logMessage(const char *pMessage)
 { cout << pMessage << endl; }
#else
#define logMessage(X) (0)
#endif

I can now sprinkle error messages throughout my program wherever I need them:

 #define DEBUG 1
#include "LogMessage"
void testFunction(char *pArg)
{
 logMessage(pArg);

 // ...function continues...

With DEBUG set to 1, the logMessage() is converted into a call to an inline function that outputs
the argument to the display. Once the program is working properly, I can remove the definition of
DEBUG. Now the references to logMessage() invoke a macro that does nothing.

A second version of the conditional compilation is the #ifdef (which is pronounced “if def”):

 #ifdef DEBUG
// included if DEBUG has been #defined
#else
// included if DEBUG has not been #defined
#endif

There is also an #ifndef (pronounced “if not def”), which is the logical reverse of #ifdef.

Intrinsically Defined Objects
C++ defines a set of intrinsic constants, which are shown in Table 10-1. These are constants that
C++ thinks are just too cool to be without — and that you would have trouble defining for yourself
anyway.

Table 10-1 Predefined Preprocessor Constants
Constant Type Meaning

__FILE__ const char
const * The name of the source file.

__LINE__ const int The current line number.

__func__ const char
const * The name of the current function (C++ ’11 only).

__DATE__ const char
const * The current date.

__TIME__ const char
const * The current time.

__TIMESTAMP__ const char
const * The current date and time.

__STDC__ int Set to 1 if the C++ compiler is compliant with the standard.

__cplusplus int Set to 1 if the compiler is a C++ compiler (as opposed to a C compiler). This allows include files to
be shared across environments.

These internal macros are particularly useful when generating error messages. You would think
that C++ generates plenty of error messages on its own and doesn’t need any more help, but
sometimes you want to create your own compiler errors. For you, C++ offers not one, not two, but
three options: #error, assert(), and static_assert(). Each of these three mechanisms works slightly
differently.

The #error command is a preprocessor directive (as you can tell by the fact that it starts with the #

sign). It causes the preprocessor to stop and output a message. Suppose that your program just
won’t work with anything but standard C++. You could add the following to the beginning of your
program:

 #if !__cplusplus || !__STDC__
#error This is a standard C++ program.
#endif

Now if someone tries to compile your program with anything other than a C++ compiler that
strictly adheres to the standards, she will get a single neat error message rather than a raft of
potentially meaningless error messages from a confused non-standard compiler.

Unlike #error, assert() performs its test when the resulting program is executed. For example,
suppose that I had written a factorial program that calculates N * (N - 1) * (N - 2) and so on down
to 1 for whatever N I pass it. Factorial is only defined for positive integers; passing a negative
number to a factorial is always a mistake. To be careful, I should add a test for a non-positive
value at the beginning of the function:

 int factorial(int N)
{
 assert(N > 0);
 // ...program continues...

The program now checks the argument to factorial() each time it is called. At the first sign of
negativity, assert() halts the program with a message to the operator that the assertion failed, along
with the file and line number.

Liberal use of assert() throughout your program is a good way to detect problems early during
development, but constantly testing for errors that have already been found and removed during
testing slows the program needlessly. To avoid this, C++ allows the programmer to “remove” the
tests when creating the version of the program to be shipped to users: #define the constant
NDEBUG (for “not debug mode”). This causes the preprocessor to convert all the calls to assert()
in your module to “do nothings” (universally known as NO-OPs).

 The preprocessor cannot perform certain compile-time tests. For example, suppose that
your program works properly only if the default integer size is 32 bits. The preprocessor is of
no help since it knows nothing about integers or floating points. To address this situation,
C++ introduced the keyword static_assert(), which is interpreted by the compiler (rather
than the preprocessor). It accepts two arguments: a const expression and a string, as in the
following example:

 static_assert(sizeof(int) == 4, "int is not 32-bits.");

If the const expression evaluates to 0 or false during compilation, the compiler outputs the string
and stops. The static_assert() does not generate any run-time code. Remember, however, that the

expression is evaluated at compile time, so it cannot contain function calls or references to things
that are known only when the program executes.

Typedef
The typedef keyword allows the programmer to create a shorthand name for a declaration. The
careful application of typedef can make the resulting program easier to read. (Note that typedef is
not actually a preprocessor command, but it’s largely associated with include files and the
preprocessor.)

 typedef int* IntPtr;
typedef const IntPtr IntConstPtr;

int i;
int *const ptr1 = &i;
IntConstPtr ptr2= ptr1; // ptr1 and ptr2 are the same type

The first two declarations in this snippet give a new name to existing types. Thus, the second
declaration declares IntConstPtr to be another name for int const*. When this new type is used in
the declaration of ptr2, it has the same effect as the more complicated declaration of ptr1.

Although typedef does not introduce any new capability, it can make some complicated
declarations a lot easier to read.

Part III
Introduction to Classes

 Visit www.dummies.com/extras/cplusplus for great Dummies content online.

http://www.dummies.com/extras/cplusplus

In this part…
Reviewing object-oriented programming
Declaring and defining class members
Declaring constructors and destructors
Defining static member functions
Visit www.dummies.com/extras/cplusplus for great Dummies content online

http://www.dummies.com/extras/cplusplus

Chapter 11
Examining Object-Oriented Programming
In This Chapter

 Making nachos
 Reviewing object-oriented programming
 Introducing abstraction and classification
 Discovering why object-oriented programming is important

What, exactly, is object-oriented programming? Object-oriented programming, or OOP as those in
the know prefer to call it, relies on two principles you learned before you ever got out of Pampers:
abstraction and classification. To explain, let me tell you a little story.

Abstracting Microwave Ovens
Sometimes when my son and I are watching football (which only happens when my wife can’t find
the switcher), I whip up a terribly unhealthy batch of nachos. I dump some chips on a plate, throw
on some beans, cheese, and lots of jalapeños, and nuke the whole mess in the microwave oven for
five minutes. To use my microwave, I open the door, throw the stuff in, and punch a few buttons.
After a few minutes, the nachos are done.

Now think for a minute about all the things I don’t do to use my microwave:

I don’t rewire or change anything inside the microwave to get it to work. The microwave has
an interface — the front panel with all the buttons and the little time display — that lets me do
everything I need to do.
I don’t have to reprogram the software used to drive the little processor inside my microwave,
even if I cooked a different dish the last time I used the microwave.
I don’t look inside my microwave’s case.
Even if I were a microwave designer and knew all about the inner workings of a microwave,
including its software, I would still use it the same way to heat my nachos without thinking
about all that stuff inside.

These are not profound observations. You can deal with only so much stress in your life. To
reduce the number of things that you deal with, you work at a certain level of detail.

 In object-oriented (OO) computerese, the level of detail at which you are working is

called the level of abstraction. To introduce another OO term while I have the chance, I
abstract away the details of the microwave’s innards.

When I’m working on nachos, I view my microwave oven as a box. (I can’t worry about the
innards of the microwave oven and still follow the Cowboys on the tube.) As long as I operate the
microwave only through its interface (the keypad), there should be nothing I can do to

Cause the microwave to enter an inconsistent state and crash.
Turn my nachos into a blackened, flaming mass.
Make the microwave (along with the surrounding house) burst into flames!

Preparing functional nachos
Suppose that I were to ask my son to write an algorithm for how Dad makes nachos. After he
understood what I wanted, he would probably write “open a can of beans, grate some cheese, cut
the jalapeños,” and so on. When it came to the part about microwaving the concoction, he would
write something like “cook in the microwave for five minutes.”

That description is straightforward and complete. But it’s not the way a functional programmer
would code a program to make nachos. Functional programmers live in a world devoid of objects
such as microwave ovens and other appliances. They tend to worry about flow charts with their
myriad functional paths. In a functional solution to the nachos problem, the flow of control would
pass through my finger to the front panel and then to the internals of the microwave. Pretty soon,
flow would be wiggling around through complex logic paths about how long to turn on the
microwave tube and whether to sound the “come and get it” tone.

In a world like this, it’s difficult to think in terms of levels of abstraction. There are no objects, no
abstractions behind which to hide inherent complexity.

Preparing object-oriented nachos
In an object-oriented approach to making nachos, I would first identify the types of objects in the
problem: chips, beans, cheese, and an oven. Then I would begin the task of modeling these objects
in software, without regard to the details of how they will be used in the final program.

While I am doing this, I’m said to be working (and thinking) at the level of the basic objects. I
need to think about making a useful oven, but I don’t have to think about the logical process of
making nachos yet. After all, the microwave designers didn’t think about the specific problem of
my making a snack. Rather, they set about the problem of designing and building a useful
microwave.

After the objects I need have been successfully coded and tested, I can ratchet up to the next level
of abstraction. I can start thinking at the nacho-making level, rather than the microwave-making
level. At this point, I can pretty much translate my son’s instructions directly into C++ code.

Classifying Microwave Ovens

Critical to the concept of abstraction is that of classification. If I were to ask my son, “What’s a
microwave?” he would probably say, “It’s an oven that …” If I then asked, “What’s an oven?” he
might reply, “It’s a kitchen appliance that …” (If I then asked, “What’s a kitchen appliance?” he
would probably say, “Why are you asking so many stupid questions?”)

The answers my son gave to my questions stem from his understanding of our particular
microwave as an example of the type of things called microwave ovens. In addition, my son sees
microwave ovens as just a special type of oven, which itself is just a special type of kitchen
appliance.

 In object-oriented computerese, the microwave in my kitchen is an instance of the class
microwave. The class microwave is a subclass of the class oven, and the class oven is a
subclass of the class kitchen appliances. We say that microwaves inherit their cooking
properties from oven.

Humans classify. Everything about our world is ordered into taxonomies. We do this to reduce the
number of things we have to remember. Take, for example, the first time you saw a hybrid car. The
advertisement probably called the hybrid “unique, the likes of which have never been seen.” But
you and I know that that just isn’t so. I like hybrids and I will grant you that they have a lot of
differences under the hood, but hey, a hybrid is still a car. As such, it shares all of (or at least most
of) the properties of other cars. It has a steering wheel, seats, a motor, brakes, and so on. I bet I
could even drive one without first reading the owner’s manual.

I don’t have to clutter my limited storage with all the things that a hybrid has in common with other
cars. All I have to remember is “a hybrid is a car that …” and tack on those few things that are
unique to a hybrid (like the price tag). I can go further. Cars are a subclass of wheeled vehicles
along with other members, such as trucks and pickups. Maybe wheeled vehicles are a subclass of
vehicles, which includes boats and planes. And on and on and on.

Why Classify?
Why do we classify? It sounds like a lot of trouble. Besides, people have been using the functional
approach for so long, why change now?

It may seem easier to design and build a microwave oven specifically for this one problem, rather
than build a separate, more generic oven object. Suppose, for example, that I want to build a
microwave to cook nachos and nachos only. I wouldn’t need to put a front panel on it, other than a
Start button. I always cook nachos the same amount of time, so I could dispense with all that
Defrost and Temp Cook nonsense. My nachos-only microwave needs to hold only one flat little
plate. Three cubic feet of space would be wasted on nachos.

For that matter, I can dispense with the concept of “microwave oven” altogether. All I really need
is the guts of the oven. Then, in the recipe, I put the instructions to make it work: “Put nachos in the
box. Connect the red wire to the black wire. Bring the radar tube up to about 3,000 volts. Notice a
slight hum. Try not to stand too close if you intend to have children.” Stuff like that.

But the functional approach has some problems:

Too complex: I don’t want the details of oven building mixed into the details of nacho
building. If I can’t define the objects and pull them out of the morass of details to deal with
separately, I must deal with all the complexities of the problem at the same time.
Not flexible: Someday I may need to replace the microwave oven with some other type of
oven. I should be able to do so as long as its interface is the same. Without being clearly
delineated and developed separately, it becomes impossible to cleanly remove an object type
and replace it with another.
Not reusable: Ovens are used to make lots of different dishes. I don’t want to create a new
oven every time I encounter a new recipe. Having solved a problem once, it would be nice to
be able to reuse the solution in future programs.

The remaining chapters in this part demonstrate how the object-oriented language features of C++
address these problems.

 In real life, it isn't quite as pure as I make it sound here. I can't spend the time to build the
software equivalent of a generic microwave oven. After all, teams of engineers spends
thousands of developer hours designing microwave ovens (and still the front panel comes out
incomprehensible!). When I build my classes, I generally only build in the capabilities that I
will need for the particular problem at hand, but still the principle is the same. When I am
building the microwave oven, I need only think about the oven. When I am making nachos, I
only have to think about using the oven. It's simpler that way.

Chapter 12
Adding Class to C++

In This Chapter
 Grouping data into classes
 Declaring and defining class members
 Adding active properties to the class
 Accessing class member functions
 Overloading member functions

Programs often deal with groups of data: a person’s name, rank, and serial number, stuff like that.
Any one of these values is not sufficient to describe a person — only in the aggregate do the
values make any sense. A simple structure such as an array is great for holding standalone values,
but it doesn’t work well for data groups. This makes good ol’ arrays inadequate for storing
complex data (such as personal credit records that the Web companies maintain so they can lose
them to hackers).

For reasons that will become clear shortly, I’ll call such a grouping of data an object. A
microwave oven is an object (see Chapter 11 if that doesn’t make sense). You are an object (no
offense). Your savings account information in a database is an object.

Introducing the Class
How nice it would be if we could create objects in C++ that have the relevant properties of the
real-world objects we’re trying to model. What we need is a structure that can hold all the
different types of data necessary to describe a single object. C++ calls the structure that combines
multiple pieces of data into a single object a class.

The Format of a Class
A class consists of the keyword class followed by a name and an open and closed brace. A class
used to describe a savings account including account number and balance might appear as follows:

 class SavingsAccount
{
 public:
 unsigned accountNumber;
 double balance;
};

The statement after the open brace is the keyword public. (Hold off asking about the meaning of
the public keyword. I’ll make its meaning public a little later.)

 The alternative keyword struct can be used in place of class. The two keywords are
identical except that the public declaration is assumed in the struct and can be omitted. You
should stick with class for most programs for reasons that will become clear later in this
chapter.

Following the public keyword are the entries it takes to describe the object. The SavingsAccount
class contains two elements: an unsigned integer accountNumber and the account balance. We can
also say that accountNumber and balance are members or properties of the class SavingsAccount.

To create an actual savings account object, I type something like the following:

 SavingsAccount mySavingsAccount;

We say that mySavingsAccount is an instance of the class SavingsAccount.

 The naming convention used here is common: Class names are normally capitalized. In a
class name with multiple words such as SavingsAccount, each word is capitalized, and the
words are jammed together without an underscore. Object names follow the same rule of
jamming multiple words together, but they normally start with a small letter, as in
mySavingsAccount. As always, these norms (I hesitate to say rules) are to help out the human
reader — C++ doesn’t care one way or the other.

Accessing the Members of a Class
The following syntax is used to access the property of a particular object:

 // Create a savings account object
SavingsAccount mySave;
mySave.accountNumber = 1234;
mySave.balance = 0.0;

// Input a second savings account from the keyboard
cout << "Input your account number and balance" << endl;
SavingsAccount urSave;
cin >> urSave.accountNumber;
cin >> urSave.balance;

This code snippet declares two objects of class SavingsAccount, mySave and urSave. The snippet
initializes mySave by assigning a value to the account number and a 0 to the balance (as per usual
for my savings account). It then creates a second object of the same class, urSave. The snippet

reads the account number and balance from the keyboard.

An important point to note in this snippet is that mySave and urSave are separate, independent
objects. Manipulating the members of one has no effect on the members of the other (lucky for
urSave).

In addition, the name of the member without an associated object makes no sense. I cannot say
either of the following:

 balance = 0.0; // illegal; no object
SavingsAccount.balance = 0.0;// class but still no object

Every savings account has its own unique account number and maintains a separate balance.
(There may be properties that are shared by all savings accounts — we’ll get to those in Chapter
18 — but account and balance don’t happen to be among them.)

Activating Our Objects
You use classes to simulate real-world objects. The Savings class tries to represent a savings
account. This allows you to think in terms of objects rather than simply lines of code. The closer
C++ objects are to modeling the real world, the easier it is to deal with them in programs. This
sounds simple enough. However, the Savings class doesn’t do a very good job of simulating a
savings account.

Simulating real-world objects
Real-world accounts have data-type properties such as account numbers and balances, the same as
the Savings class. This makes Savings a good starting point for describing a real account. But
real-world accounts do things. Savings accounts accumulate interest; CDs charge a substantial
penalty for early withdrawal — stuff like that.

Functional programs “do things” through functions. A C++ program might call strcmp() to
compare two character strings or max() to return the maximum of two values. In fact, Chapter 23
explains that even stream I/O (cin >> and cout <<) is a special form of function call.

The Savings class needs active properties of its own if it’s to do a good job of representing a real
concept:

 class Savings
{
 public:
 double deposit(double amount)
 {
 balance += amount;
 return balance;
 }

 unsigned accountNumber;

 double balance;
};

In addition to the account number and balance, this version of Savings includes the function
deposit(). This gives Savings the ability to control its own future. The class Savings needs a
function accumulateInterest(), and the class CD a function to penalizeForEarlyWithdrawal().

 Functions defined in a class are called member functions.

Why bother with member functions?
Why should you bother with member functions? What’s wrong with the good ol’ days of functional
programming?

 I'm using the term “functional programming” synonymously with “procedural
programming”, the way programming was done before object-oriented programming came
along.

 class Savings
{
 public:
 unsigned accountNumber;
 double balance;
};
double deposit(Savings& s, double amount)
{
 s.balance += amount;
 return s.balance;
}

Here, deposit() implements the “deposit into savings account” function. This functional solution
relies on an outside function, deposit(), to implement an activity that savings accounts perform but
that Savings lacks. This gets the job done, but it does so by breaking the object-oriented (OO)
rules.

The microwave oven has internal components that it “knows” how to use to cook, defrost, and
burn to a crisp. Class data members are similar to the parts of a microwave — the member
functions of a class perform cook-like functions.

When I make nachos, I don’t have to start hooking up the internal components of the oven in a
certain way to make it work. Nor do I rely on some external device to reach into a mess of wiring
for me. I want my classes to work the same way my microwave does (and, no, I don’t mean “not
very well”). I want my classes to know how to manipulate their internals without outside
intervention.

Adding a Member Function
To demonstrate member functions, start by defining a class Student. One possible representation
of such a class follows (taken from the program CallMemberFunction):

 class Student
{
 public:
 // add a completed course to the record
 double addCourse(int hours, double grade)
 {
 // calculate the sum of all courses times
 // the average grade
 double weightedGPA;
 weightedGPA = semesterHours * gpa;

 // now add in the new course
 semesterHours += hours;
 weightedGPA += grade * hours;
 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

The function addCourse(int, double) is called a member function of the class Student. In
principle, it’s a property of the class like the data members semesterHours and gpa.

Sometimes functions that are not members of a class are class “plain ol’ functions,” but I’ll refer
to them simply as nonmembers.

 The member functions do not have to precede the data members as in this example. The
members of a class can be listed in any order — I just prefer to put the functions first.

 For historical reasons, member functions are also called methods. This term originated in
one of the original object-oriented languages. The name made sense there, but it makes no
sense in C++. Nevertheless, the term has gained popularity in OO circles because it’s easier
to say than “member function.” (The fact that it sounds more impressive probably doesn’t

hurt, either.) So, if your friends start spouting off at a dinner party about “methods of the
class,” just replace methods with member functions and reparse anything they say.

Calling a Member Function
The following CallMemberFunction program shows how to invoke the member function
addCourse():

 // CallMemberFunction - define and invoke a function
// that's a member of the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 // add a completed course to the record
 double addCourse(int hours, double grade)
 {
 // calculate the sum of all courses times
 // the average grade
 double weightedGPA;
 weightedGPA = semesterHours * gpa;

 // now add in the new course
 semesterHours += hours;
 weightedGPA += grade * hours;
 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a Student object and initialize it

 Student s;
 s.semesterHours = 3;
 s.gpa = 3.0;

 // the values before the call
 cout << "Before: s = (" << s.semesterHours
 << ", " << s. gpa << ")" << endl;

 // the following subjects the data members of the s
 // object to the member function addCourse()
 cout << "Adding 3 hours with a grade of 4.0" << endl;
 s.addCourse(3, 4.0); // call the member function

 // the values are now changed
 cout << "After: s = (" << s.semesterHours
 << ", " << s. gpa << ")" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The syntax for calling a member function looks like a cross between the syntax for accessing a
data member and that used for calling a function. The right side of the dot looks like a conventional
function call, but an object is on the left of the dot.

In the call s.addCourse(), we say that “addCourse() operates on the object s” or, said another
way, “s is the student to which the course is to be added.” You can’t fetch the number of semester
hours without knowing from which student to fetch those hours — you can’t add a student to a
course without knowing which student to add. Calling a member function without an object makes
no more sense than referencing a data member without an object.

Accessing other members from a member function
I can see it clearly: You repeat to yourself, “Accessing a member without an object makes no
sense. Accessing a member without an object makes no sense. Accessing …” Just about the time
you’ve accepted this, you look at the member function Student::addCourse() and Wham! It hits
you: addCourse() accesses other class members without reference to an object. So how do they do
that?

 Naming the current object
How does the member function know what the current object is? It’s not magic — the address of the object is passed to
the member function as an implicit and hidden first argument. In other words, the following conversion is taking place:

s.addCourse(3, 2.5)
is like

Student::addCourse(&s, 3, 2.5)
(Note that you can’t actually use the explicit syntax; this is just the way C++ sees it.)

Inside the function, this implicit pointer to the current object has a name, in case you need to refer to it. It is called this,
as in “Which object? This object.” Get it? The type of this is always a pointer to an object of the appropriate class.

Anytime a member function refers to another member of the same class without providing an object explicitly, C++
assumes that the programmer meant this. You also can refer to this explicitly, if you like. I could have written
Student::addCourse() as follows:

double Student::addCourse(int hours, double grade)
{
 double weightedGPA;
 weightedGPA = this->semesterHours * this->gpa;

 // now add in the new course
 this->semesterHours += hours;
 weightedGPA += hours * grade;
 this->gpa = weightedGPA / this->semesterHours;
 return this->gpa;
}

The effect is the same whether you explicitly include this, as in the preceding example, or leave it implicit, as you did
before.

Okay, which is it, can you or can’t you? Believe me, you can’t. When you reference a member of
Student from addCourse(), that reference is against the Student object with which the call to
addCourse() was made. Huh? Go back to the CallMemberFunction example. A stripped-down
version appears here:

 int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.semesterHours = 10;
 s.gpa = 3.0;
 s.addCourse(3, 4.0); // call the member function

 Student t;
 t.semesterHours = 6;

 t.gpa = 1.0; // not doing so good
 t.addCourse(3, 1.5); // things aren't getting
 // much better

 return 0;
}

When addCourse() is invoked with the object s, all of the otherwise unqualified member
references in addCourse() refer to s as well. Thus, the reference to semesterHours in
addCourse() refers to s.semesterHours, and gpa refers to s.gpa. But when addCourse() is
invoked with the Student t object, these same references are to t.semesterHours and t.gpa instead.

 The object with which the member function was invoked is the “current” object, and all
unqualified references to class members refer to this object. Put another way, unqualified
references to class members made from a member function are always against the current
object.

Scope Resolution (And I Don’t Mean How Well
Your Telescope Works)

The :: between a member and its class name is called the scope resolution operator because it
indicates the class to which a member belongs. The class name before the colons is like the family
last name, while the function name after the colons is like the first name — the order is similar to a
Chinese name, family name first.

You use the :: operator to describe a non-member function by using a null class name. The non-
member function addCourse, for example, can be referred to as ::addCourse(int, double), if you
prefer. This is like a function without a home.

Normally the :: operator is optional, but there are a few occasions when this is not so, as
illustrated here:

 // addCourse - combine the hours and grade into
// a weighted grade
double addCourse(int hours, double grade)
{
 return hours * grade;
}

class Student
{
 public:
 // add a completed course to the record

 double addCourse(int hours, double grade)
 {
 // call some external function to calculate the
 // weighted grade
 double weightedGPA=::addCourse(semesterHours,gpa);

 // now add in the new course
 semesterHours += hours;

 // use the same function to calculate the weighted
 // grade of this new course
 weightedGPA += ::addCourse(hours, grade);
 gpa = weightedGPA / semesterHours;

 // return the new gpa
 return gpa;
 }

 int semesterHours;
 double gpa;
};

Here, I want the member function Student::addCourse() to call the non-member function
::addCourse(). Without the :: operator, however, a call to addCourse() from Student refers to
Student::addCourse(). This would result in the function calling itself.

Defining a Member Function in the Class
A member function can be defined either in the class or separately. When defined in the class
definition, the function looks like the following, which is contained in the include file Savings.h:

 // Savings - define a class that includes the ability
// to make a deposit
class Savings
{
 public:
 // define a member function deposit()
 double deposit(double amount)
 {
 balance += amount;
 return balance;
 }

 unsigned int accountNumber;

 double balance;
};

Using an include like this is pretty slick. Now a program can include the class definition (along
with the definition for the member function), as follows in the venerable SavingsClass_inline
program:

 //
// SavingsClassInline - invoke a member function that's
// both declared and defined within
// the class Student
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include "Savings.h"

int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s;
 s.accountNumber = 123456;
 s.balance = 0.0;

 // now add something to the account
 cout << "Depositing 10 to account "
 << s.accountNumber << endl;
 s.deposit(10);
 cout << "Balance is " << s.balance << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This is cool because everyone other than the programmer of the Savings class can concentrate on
the act of performing a deposit rather than the details of banking. These details are neatly tucked
away in their own include files.

 The #include directive inserts the contents of the file during the compilation process. The
C++ compiler actually “sees” your source file with the contents of the Savings.h file
included. See Chapter 10 for details on include files.

 Inlining member functions
Member functions defined in the class default to inline (unless they have been specifically outlined by a compiler switch
or for any number of very technical reasons). Mostly, this is because a member function defined in the class is usually
very small, and small functions are prime candidates for inlining.

Remember that an inline function is expanded where it is invoked. (See Chapter 10 for a comparison of inline functions
and macros.) An inline function executes faster because the processor doesn’t have to jump over to where the function
is defined — inline functions usually take up more memory because they are copied into every call instead of being
defined just once.

There is another good but more technical reason to inline member functions defined within a class. Remember that
C++ structures are normally defined in include files, which are then included in the .CPP source files that need them.
Such include files should not contain data or functions because these files are compiled multiple times. Including an
inline function is okay, however, because it (like a macro) expands in place in the source file. The same applies to C++
classes. By defaulting member functions defined in classes inline, you avoid the preceding problem.

Keeping a Member Function after Class
For larger functions, putting the code directly in the class definition can lead to some large,
unwieldy class definitions. To prevent this, C++ lets you define member functions outside the
class.

 A function that is defined outside the class is said to be an outline function. This term is
meant to be the opposite of an inline function that has been defined within the class. Your
basic functions such as those we have defined since Chapter 5 are also outline functions.

When written outside the class declaration, the Savings.h file declares the deposit() function
without defining it as follows:

 // Savings - define a class that includes the ability
// to make a deposit
class Savings
{
 public:
 // declare but don't define member function
 double deposit(double amount);

 unsigned int accountNumber;
 double balance;
};

The definition of the deposit() function must be included in one of the source files that make up the
program. For simplicity, I defined it within main.cpp.

 You would not normally combine the member function definition with the rest of your
program. It is more convenient to collect the outlined member function definitions into a
source file with an appropriate name (such as Savings.cpp). This source file is combined
with other source files as part of building the executable program. I describe this in Chapter
21.

 // SavingsClassOutline - invoke a member function that's
// declared within a class but
// defined in a separate file
//
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;
#include "Savings.h"

// define the member function Savings::deposit()
// (normally this is contained in a separate file that is
// then combined with a different file that is combined)
double Savings::deposit(double amount)
{
 balance += amount;
 return balance;
}

// the main program
int main(int nNumberofArgs, char* pszArgs[])
{
 Savings s;
 s.accountNumber = 123456;
 s.balance = 0.0;

 // now add something to the account
 cout << "Depositing 10 to account "
 << s.accountNumber << endl;

 s.deposit(10);
 cout << "Balance is " << s.balance << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This class definition contains nothing more than a prototype declaration for the function deposit().
The function definition appears separately. The member function prototype declaration in the
structure is analogous to any other prototype declaration and, like all prototype declarations, is
required.

Notice how the function nickname deposit() was good enough when the function was defined
within the class. When defined outside the class, however, the function requires its extended name,
Savings::deposit().

Overloading Member Functions
Member functions can be overloaded in the same way that conventional functions are overloaded.
(See Chapter 6 if you don’t remember what that means.) Remember, however, that the class name
is part of the extended name. Thus, the following functions are all legal:

 class Student
{
 public:
 // grade -- return the current grade point average
 double grade();
 // grade -- set the grade and return previous value
 double grade(double newGPA);
 // ...data members and other stuff...
};
class Slope
{
 public:
 // grade -- return the percentage grade of the slope
 double grade();
 // ...stuff goes here too...
};

// grade - return the letter equivalent of a number grade

char grade(double value);

int main(int argcs, char* pArgs[])
{
 Student s;
 s.grade(3.5); // Student::grade(double)
 double v = s.grade(); // Student::grade()

 char c = grade(v); // ::grade(double)

 Slope o;
 double m = o.grade(); // Slope::grade()
 return 0;
}

Each call made from main() is noted in the comments with the extended name of the function
called.

When calling overloaded functions, not only the arguments of the function but also the type of the
object (if any) with which the function is invoked are used to resolve the call. (The term resolve is
object-oriented talk for “decide at compile time which overloaded function to call.” A mere
mortal might say “differentiate.”)

Chapter 13
Point and Stare at Objects

In This Chapter
 Examining the object of arrays of objects
 Getting a few pointers on object pointers
 Strong typing — getting picky about our pointers
 Navigating through lists of objects

C++ programmers are forever generating arrays of things — arrays of ints, arrays of doubles —
so why not arrays of students? Students stand in line all the time — a lot more than they care to.
The concept of Student objects all lined up quietly awaiting their names to jump up to perform
some mundane task is just too attractive to pass up.

Declaring Arrays of Objects
Arrays of objects work the same way arrays of simple variables work. (Chapter 7 goes into the
care and feeding of arrays of simple — intrinsic — variables, and Chapters 8 and 9 describe
simple pointers in detail.) Take, for example, the following snippet from the ArrayOfStudents
program:

 // ArrayOfStudents - define an array of student objects
// and access an element in it. This
// program doesn't do anything
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
 double addCourse(int hours, double grade){return 0.0;}
};

void someFn()
{

 // declare an array of 10 students
 Student s[10];

 // assign the 5th student a gpa of 4.0 (lucky guy)
 s[4].gpa = 4.0;
 s[4].semesterHours = 32;

 // add another course to the 5th student;
 // this time he failed - serves him right
 s[4].addCourse(3, 0.0);
}

Here s is an array of Student objects. s[4] refers to the fifth Student object in the array. By
extension, s[4].gpa refers to the GPA of the fifth student. Further, s[4].addCourse() adds a course
to the fifth Student object.

Declaring Pointers to Objects
Pointers to objects work like pointers to simple types, as you can see in the example program
ObjPtr:

 // ObjPtr - define and use a pointer to a Student object
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
 double addCourse(int hours, double grade);
};

int main(int argc, char* pArgs[])
{
 // create a Student object
 Student s;
 s.gpa = 3.0;

 // now create a pointer pS to a Student object
 Student* pS;

 // make pS point to our Student object
 pS = &s;

 // now output the gpa of the object, once thru
 // the variable name and a second time thru pS
 cout << "s.gpa = " << s.gpa << "\n"
 << "pS->gpa = " << pS->gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program declares a variable s of type Student. It then goes on to declare a pointer variable pS
of type “pointer to a Student object,” also written as Student*. The program initializes the value
of one of the data members in s. It then proceeds to assign the address of s to the variable pS.
Finally, it refers to the same Student object, first using the object’s name, s, and then using the
pointer to the object, pS. I explain the strange notation pS->gpa; in the next section of this chapter.

Dereferencing an object pointer
By analogy of pointers to simple variables, you might think that the following refers to the GPA of
student s:

 int main(int argc, char* pArgs[])
{
 Student s;
 Student* pS = &s; // create a pointer to s

 // access the gpa member of the obj pointed at by pS
 // (this doesn't work)
 *pS.gpa = 3.5;

 return 0;
}

As the comments indicate, this doesn’t work. The problem is that the dot operator (.) is evaluated
before the pointer (*). Thus, *ps.gpa is interpreted as if written *(ps.gpa). Parentheses are
necessary to force the pointer operator to be evaluated before the dot:

 int main(int argc, char* pArgs[])
{
 Student s;

 Student* pS = &s; // create a pointer to s

 // access the gpa member of the obj pointed at by pS
 // (this works as expected)
 (*pS).gpa = 3.5;

 return 0;
}

The *pS evaluates to the pointer’s Student object pointed at by pS. The .gpa refers to the gpa
member of that object.

Pointing toward arrow pointers
Using the asterisk operator together with parentheses works just fine for dereferencing pointers to
objects; however, even the most hardened techies would admit that this mixing of asterisks and
parentheses is a bit tortured.

C++ offers a more convenient operator for accessing members of an object to avoid clumsy object
pointer expressions. The -> operator is defined as follows:

 ps->gpa is equivalent to(*pS).gpa

This leads to the following:

 int main(int argc, char* pArgs[])
{
 Student s;
 Student* pS = &s; // create a pointer to s

 // access the gpa member of the obj pointed at by pS
 pS->gpa = 3.5;

 return 0;
}

The arrow operator is used almost exclusively because it is easier to read; however, the two
forms are completely equivalent.

Passing Objects to Functions
Passing pointers to functions is just one of the many ways to entertain yourself with pointer
variables.

Calling a function with an object value
As you know, C++ passes arguments to functions by reference when the argument type is flagged
with the & property (see Chapter 8). However, by default, C++ passes arguments to functions by

value. (You can check Chapter 6 on this one, if you insist.)

Complex, user-defined class objects are passed the same as simple int values, as shown in the
following PassObjVal program:

 // PassObjVal - attempts to change the value of an object
// in a function fail when the object is
// passed by value
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

void someFn(Student copyS)
{
 copyS.semesterHours = 10;
 copyS.gpa = 3.0;
 cout << "The value of copyS.gpa = "<<copyS.gpa<< endl;
}

int main(int argc, char* pArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student)" << endl;
 someFn(s);
 cout << "Returned from someFn(Student)" << endl;

 // the value of s.gpa remains 0
 cout << "The value of s.gpa = " << s.gpa << endl;

 // wait until user is ready before terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function main() creates an object s and then passes s to the function someFn().

 It is not the object s itself that is passed, but a copy of s.

The object copyS in someFn() begins life as an exact copy of the variable s in main(). Since it is a
copy, any change to copyS made within someFn() has no effect on s back in main(). Executing this
program generates the following understandable but disappointing response:

 The value of s.gpa = 0
Calling someFn(Student)
The value of copyS.gpa = 3
Returned from someFn(Student)
The value of s.gpa = 0
Press Enter to continue...

Calling a function with an object pointer
Most of the time, the programmer wants any changes made in the function to be reflected in the
calling function as well. For this, the C++ programmer must pass either the address of an object or
a reference to the object. The following PassObjPtr program uses the address approach:

 // PassObjPtr - change the contents of an object in
// a function by passing a pointer
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

void someFn(Student* pS)
{
 pS->semesterHours = 10;

 pS->gpa = 3.0;
 cout << "The value of pS->gpa = " << pS->gpa << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student*)" << endl;
 someFn(&s);
 cout << "Returned from someFn(Student*)" << endl;

 // the value of s.gpa is now 3.0
 cout << "The value of s.gpa = " << s.gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The type of the argument to someFn() is a pointer to a Student object (otherwise known as
Student*). This is reflected in the way that the program calls someFn(), passing the address of s
rather than the value of s. Giving someFn() the address of s allows him to modify whatever value
that is stored there. Conceptually, this is akin to writing down the address of the house s on the
piece of paper pS and then passing that paper to someFn(). The function someFn() uses the arrow
syntax for dereferencing the pS pointer.

The output from PassObjPtr is much more satisfying (to me, anyway):

 The value of s.gpa = 0
Calling someFn(Student*)
The value of pS->gpa = 3
Returned from someFn(Student*)
The value of s.gpa = 3
Press Enter to continue...

Calling a function by using the reference operator

Chapter 6 introduces the concept of passing simple argument types to functions by reference using
the “&” operator. The following PassObjRef demonstrates the same for user-defined objects:

 // PassObjRef - change the contents of an object in
// a function by using a reference
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 int semesterHours;
 double gpa;
};

// same as before, but this time using references
void someFn(Student& refS)
{
 refS.semesterHours = 10;
 refS.gpa = 3.0;
 cout << "The value of copyS.gpa = " <<refS.gpa<< endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student s;
 s.gpa = 0.0;

 // display the value of s.gpa before calling someFn()
 cout << "The value of s.gpa = " << s.gpa << endl;

 // pass the address of the existing object
 cout << "Calling someFn(Student*)" << endl;
 someFn(s);
 cout << "Returned from someFn(Student&)" << endl;

 // the value of s.gpa is now 3.0
 cout << "The value of s.gpa = " << s.gpa << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

In this example, C++ passes a reference to s rather than a copy. The output from this version is
identical to the PassObjPtr program — changes made in someFn() are retained in main().

Why Bother with Pointers or References?
Okay, so both pointers and references provide relative advantages, but why bother with either
one? Why not just always pass the object? I mentioned one obvious answer earlier in this chapter:
You can’t modify the object from a function that gets nothing but a copy of the structure object.

Here’s a second reason: Some objects are large — I mean really large. An object representing a
screen image can be many megabytes in length. Passing such an object by value means copying the
entire thing into the function’s memory.

The object will need to be copied again should that function call another, and so on. After a while,
you can end up with dozens of copies of this object. That consumes memory, and copying all the
objects can make execution of your program slower than booting up Windows.

 The problem of copying objects gets worse. You see in Chapter 17 that making a copy of
an object can be even more painful than simply copying some memory around.

Passing a pointer (or a reference) is very fast. A pointer is 4 bytes, no matter how big the object
being pointed at is.

Returning to the Heap
The problems that exist for simple types of pointers plague class object pointers as well. In
particular, you must make sure that the pointer you’re using actually points to a valid object. For
example, don’t return a reference to an object defined local to the function:

 MyClass* myFunc()
{
 // the following does not work
 MyClass mc;
 MyClass* pMC = &mc;
 return pMC;
}

Upon return from myFunc(), the mc object goes out of scope. The pointer returned by myFunc() is
not valid in the calling function.

 The problem of returning memory that’s about to go out of scope is discussed in Chapter 9.

Allocating the object off the heap solves the problem:

 MyClass* myFunc()
{
 MyClass* pMC = new MyClass;
 return pMC;
}

Here the memory allocated off the heap is not returned when the variable pMC goes out of scope.

 Programmers allocate memory from the heap if they don’t want the memory to be lost
when any particular variable goes out of scope. The programmer is responsible for both
allocating and returning heap memory.

Allocating heaps of objects
It is also possible to allocate an array of objects off the heap using the following syntax:

 class MyClass
{
 public:
 int nValue;
};
void fn()
{
 MyClass* pMC = new MyClass[5]

 // reference individual members like any array
 for (int i = 0; i < 5; i++)
 {
 pMC[i].nValue = i;
 }

 // uses a different delete keyword to return memory
 // to the heap
 delete[] pMC;
};

Notice that once allocated, pMC can be used like any other array, with pMC[i] referring to the ith
object of type MyClass. Notice also that you use the slightly different keyword delete[] to return
arrays of class objects to the heap.

When memory is allocated for you
Many classes (particularly the containers described in Chapter 27) manage heap memory for you.
For example, the string class maintains a character string in memory that it allocates off of the
heap. The authors of these classes are careful to return heap memory in all the right places so that
it's safe to write a function like the following:

 string myFunc()
{
 string localString;
 localString << cin;
 return localString;
}

The object localString allocates heap memory when it is created but carefully returns said
memory when it goes out of scope at the end of the function. (You will see in Chapters 16 and 17
how this magic is performed.)

Linking Up with Linked Lists
The second most common structure after the array is called a list. Lists come in different sizes and
types; however, the most common one is the linked list. In the linked list, each object points to the
next member in a sort of chain that extends through memory. The program can simply point the last
element in the list to an object to add it to the list. This means that the user doesn’t have to declare
the size of the linked list at the beginning of the program — you can add and remove objects from
the list by merely unlinking them. In addition, you can sort the members of a linked list — without
actually moving data objects around — by changing the links.

The cost of such flexibility is speed of access. You can’t just reach in and grab the tenth element,
for example, like you would in the case of an array. Instead, you have to start at the beginning of
the list and link ten times from one object to the next.

A linked list has one other feature besides its run-time expandability (that’s good) and its difficulty
in accessing an object at random (that’s bad): A linked list makes significant use of pointers. This
makes linked lists a great tool for giving you experience in manipulating pointer variables (that's
very good).

 The C++ standard library offers a number of different types of lists. You can see them in
action in Chapter 27; however, it’s always good to implement your first linked list yourself to
get practice in manipulating pointers.

Not every class can be used to create a linked list. You declare a linkable class as follows:

 class LinkableClass
{

 public:
 LinkableClass* pNext;

 // other members of the class
};

The key to a linkable class is the pNext pointer. At first blush, this seems odd indeed — a class
contains a pointer to itself? Actually, pNext is not a pointer to itself but to another, different object
of the same type.

A linked list is similar to a chain of school children crossing the street. The pNext pointer
corresponds to a child's arm reaching out and grabbing the child next to him.

Somewhere outside the linked list is a pointer to the first element of the list, the head pointer. The
head pointer is simply a pointer of type LinkableClass*:, sort of like the teacher holding onto the
first kid in the chain.

 Always initialize any pointer to nullptr, the pointer that doesn’t point to anything, the non-
pointer.

 LinkableClass* pHead = nullptr;

 For C++ compilers prior to the ’11 standard that don’t implement nullptr, use a hardcoded
0 or an equivalent #define instead:#define NULLPTR 0.

LinkableClass* pHead = NULLPTR;

To see how linked lists work in practice, consider the following function, which adds the
argument passed it to the beginning of a list:

 void addHead(LinkableClass* pLC)
{
 pLC->pNext = pHead;
 pHead = pLC;
}

Here, the pNext pointer of the object is set to point to the first member of the list. This is akin to
grabbing the hand of the first kid in the chain. For one instruction, both you and the teacher have
hold of this first kid in the list. The second line points the head pointer to the object, sort of like
having the teacher let go of the kid you’re holding onto and grabbing you. That makes you the first
kid in the chain.

Performing other operations on a linked list
Adding an object to the head of a list is the simplest operation on a linked list. Moving through the
elements in a list gives you a better idea about how a linked list works:

 // navigate through a linked list
LinkableClass* pL = pHead;
while(pL)
{
 // perform some operation here

 // get the next entry
 pL = pL->pNext;
}

The program initializes the pL pointer to the first object of a list of LinkableClass objects through
the pointer pHead. (Grab the first kid’s hand.) The program then enters the while loop. If the pL
pointer is non-null, it points to some LinkableClass object. Control enters the loop, where the
program can then perform whatever operations it wants on the object pointed at by pL.

The assignment pL = pL->pNext “moves” the pL pointer over to the next kid in the list of objects.
The program checks to see if pL is null, meaning that we’ve exhausted the list … I mean run out of
kids, not exhausted all the kids in the list.

Hooking up with a LinkedListData program
The LinkedListData program shown here implements a linked list of objects containing a person’s
name. The program could easily contain whatever other data you might like, such as Social
Security number, grade point average, height, weight, and bank account balance. I’ve limited the
information to just a name to keep the program as simple as possible.

 // LinkedListData - store data in a linked list of objects
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

// NameDataSet - stores a person's name (these objects
// could easily store any other information
// desired).
class NameDataSet
{
 public:
 string sName;

 // the link to the next entry in the list
 NameDataSet* pNext;
};

// the pointer to the first entry in the list
NameDataSet* pHead = nullptr;

// add - add a new member to the linked list
void add(NameDataSet* pNDS)
{
 // point the current entry to the beginning of list
 pNDS->pNext = pHead;

 // point the head pointer to the current entry
 pHead = pNDS;
}

// getData - read a name and social security
// number; return null if no more to read
NameDataSet* getData()
{
 // read the first name
 string name;
 cout << "Enter name:";
 cin >> name;

 // if the name entered is 'exit'...
 if (name == "exit")
 {
 // ...return a null to terminate input
 return nullptr;
 }

 // get a new entry and fill in values
 NameDataSet* pNDS = new NameDataSet;
 pNDS->sName = name;
 pNDS->pNext = nullptr; // zero link

 // return the address of the object created
 return pNDS;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Read names of students\n"
 << "Enter 'exit' for first name to exit"
 << endl;

 // create (another) NameDataSet object
 NameDataSet* pNDS;
 while (pNDS = getData())
 {
 // add it to the list of NameDataSet objects
 add(pNDS);
 }

 // to display the objects, iterate through the
 // list (stop when the next address is NULL)
 cout << "\nEntries:" << endl;
 for(NameDataSet *pIter = pHead;
 pIter; pIter = pIter->pNext)
 {
 // display name of current entry
 cout << pIter->sName << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Although somewhat lengthy, the LinkedListData program is simple if you take it in parts. The
NameDataSet structure has room for a person’s name and a link to the next NameDataSet object
in a linked list. I mentioned earlier that this class would have other members in a real-world
application.

 I have used the class string to contain the person’s name. Although I don’t describe all the
methods of the string class until Chapter 27, it is much easier to use than zero-terminated
character strings. You will see the string class used in preference to character strings in most
applications these days. The string class has become about as close to an intrinsic type in the
C++ language as possible.

The main() function starts looping, calling getData() on each iteration to fetch another
NameDataSet entry from the user. The program exits the loop if getData() returns a null, the
“nonaddress,” for an address.

The getData() function prompts the user for a name and reads in whatever the user enters. If the

string entered is equal to exit, the function returns a null to the caller, thereby exiting the while
loop. If the string entered is not exit, the program creates a new NameDataSet object, populates
the name, and zeroes out the pNext pointer.

 Never leave link pointers uninitialized. Use the old programmer’s wives’ tale: “When in
doubt, zero it out.” (I mean “Old tale,” not “Tale of an old wife.”)

Finally, getData() returns the object’s address to main().

main() adds each object returned from getData() to the beginning of the linked list pointed at by
the global variable pHead. Control exits the initial while loop when getData() returns a null.
main() then enters a second section that iterates through the completed list, displaying each object.

This time I used a for loop that is functionally equivalent to the earlier while loop. The for loop
initializes the iteration pointer pIter to point to the first element in the list through the assignment
pIter = pHead. It next checks to see if pIter is null, which will be the case when the list is
exhausted. It then enters the loop. On each round trip through the for loop, the third clause moves
pIter from one object to the next with the assignment pIter = pIter->pNext before repeating the
test and the body of the loop. This pattern is commonly followed for all list types.

The output of a sample run of the program appears as follows:

 Read names of students
Enter 'exit' for first name to exit
Enter name:Randy
Enter name:Loli
Enter name:Bodi
Enter name:exit

Entries:
Bodi
Loli
Randy
Press Enter to continue...

 The program outputs the names in the opposite order in which they were entered. This is
because each new object is added to the beginning of the list. Alternatively, the program
could have added each object to the end of the list — doing so just takes a little more code. I
included just such a version in the programs on the web site. Called LinkedListForward, it
links newly added objects to the end of the list so that the list comes out in the same order it
was entered. The only difference is in the add() function. See if you can create this forward
version before you peek at my solution.

Ray of Hope: A List of Containers Linked to the
C++ Library

I believe everyone should walk before they run, should figure out how to perform arithmetic in
their heads before using a calculator, and should write a linked list program before using a list
class written by someone else. That being said, in Chapter 27, I describe the list class provided by
the C++ environment.

Chapter 14
Protecting Members: Do Not Disturb

In This Chapter
 Declaring members protected
 Accessing protected members from within the class
 Accessing protected members from outside the class

Chapter 12 introduces the concept of the class. That chapter describes the public keyword as
though it were part of the class declaration — just something you do. In this chapter, you find out
about an alternative to public.

Protecting Members
The members of a class can be marked protected, which makes them inaccessible outside the
class. The alternative is to make the members public. Public members are accessible to all.

 Please understand the term inaccessible in a weak sense. Any programmer can go into the
source code, remove the protected keyword, and do whatever she wants. Further, any hacker
worth his salt can code into a protected section of code. The protected keyword is designed
to protect a programmer from herself by preventing inadvertent access.

Why you need protected members
To understand the role of protected, think about the goals of object-oriented programming:

To protect the internals of the class from outside functions. Suppose, for example, that you
have a plan to build a software microwave (or whatever), provide it with a simple interface to
the outside world, and then put a box around it to keep others from messing with the insides.
The protected keyword is that box.
To make the class responsible for maintaining its internal state. It’s not fair to ask the class
to be responsible if others can reach in and manipulate its internals (any more than it’s fair to
ask a microwave designer to be responsible for the consequences of my mucking with a
microwave’s internal wiring).
To limit the interface of the class to the outside world. It’s easier to figure out and use a
class that has a limited interface (the public members). Protected members are hidden from the
user and need not be learned. The interface becomes the class; this is called abstraction (see
Chapter 11 for more on abstraction).

To reduce the level of interconnection between the class and other code. By limiting
interconnection, you can more easily replace one class with another or use the class in other
programs.

Now, I know what you non-object oriented types out there are saying: “You don’t need some fancy
feature to do all that. Just make a rule that says certain members are publicly accessible and others
are not.”

Although that is true in theory, it doesn’t work. People start out with all kinds of good intentions,
but as long as the language doesn’t at least discourage direct access of protected members, these
good intentions get crushed under the pressure to get the product out the door.

Discovering how protected members work
By default, the members of a class are protected, which means they are not accessible by
nonmembers of the class. Adding the keyword public to a class makes subsequent members
public, which means that they are accessible by nonmember functions. Adding the keyword
protected makes subsequent members of the class protected. You can switch between public and
protected as often as you like.

Suppose you have a class named Student. In this example, the following capabilities are all that a
fully functional, upstanding Student needs (notice the absence of spendMoney() and drinkBeer()
— this is a highly stylized student):

addCourse(inthours, double grade) — adds a course
grade() — returns the current grade point average
hours() — returns the number of hours earned toward graduation

The remaining members of Student can be declared protected to keep other functions’ prying
expressions out of Student’s business.

 class Student
{
 public:
 // grade - return the current grade point average
 double grade() { return gpa;}

 // hours - return the number of semester hours
 int hours() { return semesterHours; }
 // addCourse - add a course to the student's record
 double addCourse(int hours, double grade);

 // the following members are off-limits to others
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa; // grade point average

};

Now the members semester hours and gpa are accessible only to other members of Student. Thus,
the following doesn’t work:

 Student s;
int main(int argcs, char* pArgs[])
{
 // raise my grade (don't make it too high; otherwise, no
 // one would believe it)
 s.gpa = 3.5; // <- generates compiler error
 double gpa = s.grade();// <- this public function reads
 // a copy of the value, but you
 return 0; // can't change it from here
}

The application’s attempt to change the value of gpa is flagged with a compiler error.

 A class member can also be protected by declaring it private. In this book, I use the
protected keyword exclusively. The difference between private and protected has to do with
inheritance, which is presented in Chapter 19.

Making an Argument for Using Protected
Members

Now that you know a little more about how to use protected members in an actual class, I can
replay the arguments for using protected members.

Protecting the internal state of the class
Making the gpa member protected precludes the application from setting the grade point average
to some arbitrary value. The application can add courses, but it can’t change the grade point
average directly.

If the application has a legitimate need to set the grade point average directly, the class can
provide a member function for that purpose, as follows:

 class Student
{
 public:
 // same as before
 double grade() { return gpa; }
 // here we allow the grade to be changed
 double grade(double newGPA)

 {
 double oldGPA = gpa;
 // only if the new value is valid
 if (newGPA > 0 && newGPA <= 4.0)
 {
 gpa = newGPA;
 }
 return oldGPA;
 }
 // ...other stuff is the same including the data members:
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};

The addition of the member function grade(double) allows the application to set the gpa. Notice,
however, that the class still hasn’t given up control completely. The application can’t set gpa to
any old value; only a gpa in the legal range of values (from 0 through 4.0) is accepted.

Thus, the Student class has provided access to an internal data member without abdicating its
responsibility to make sure that the internal state of the class is valid.

Using a class with a limited interface
A class provides a limited interface. To use a class, you need to know only its public members as
well as what they do and their arguments. This can drastically reduce the number of things you
need to master and remember to use the class.

As conditions change or as bugs are found, you want to be able to change the internal workings of
a class. Changes to those details are less likely to require changes in the external application code
if you can hide the internal workings of the class.

A second, perhaps more important, reason lies in the limited ability of humans (I can't speak for
dogs and cats) to keep a large number of things in their minds at any given instant. Using a strictly
defined class interface allows the programmer to forget the details that go on behind it. Likewise,
a programmer building the class need not concentrate to quite the same degree on exactly how
each of the functions is being used.

Giving Non-member Functions Access to
Protected Members

Occasionally, you want a non-member function to have access to the protected members of a class.
You do so by declaring the function to be a friend of the class by using the keyword friend.

The friend declaration appears in the class that contains the protected member. The friend
declaration is like a prototype declaration in that it includes the extended name and the return type.

In the following example, the function initialize() can now access anything it wants in Student:

 class Student
{
 friend void initialize(Student*);
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};
// the following function is a friend of Student
// so it can access the protected members
void initialize(Student *pS)
{
 pS->gpa = 0; // this is now legal...
 pS->semesterHours = 0; // ...when it wasn't before
}

A single function can be declared a friend of two classes at the same time. Although this can be
convenient, it tends to bind the two classes together. This binding of classes is normally
considered bad because it makes one class dependent on the other. If the two classes naturally
belong together, however, it’s not all bad, as shown here:

 class Student; // forward declaration
class Teacher
{
 friend void registration(Teacher& t, Student& s);
 public:
 void assignGrades();
 protected:
 int noStudents;
 Student *pList[100];
};
class Student
{
 friend void registration(Teacher& t, Student& s);
 public:
 // same public members as before...
 protected:
 Teacher *pT;
 int semesterHours; // hours earned toward graduation
 double gpa;
};

void registration(Teacher& t, Student& s)
{
 // initialize the Student object
 s.semesterHours = 0;
 s.gpa = 0;

 // if there's room...
 if (t.noStudents < 100)
 {
 // ...add it onto the end of the list
 t.pList[t.noStudents] = &s;
 t.noStudents++;
 }
}

In this example, the registration() function can reach into both the Student and Teacher classes to
tie them together at registration time, without being a member function of either one.

 The first line in the example declares the class Student, but none of its members. This is
called a forward declaration and just defines the name of the class so that other classes, such
as Teacher, can define a pointer to it. Forward declarations are necessary when two classes
refer to each other.

A member function of one class may be declared a friend of another class, as shown here:

 class Teacher
{
 // ...other members as well...
 public:
 void assignGrades();
};
class Student
{
 friend void Teacher::assignGrades();
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};
void Teacher::assignGrades()
{

 // can access protected members of Teacher from here
}

Unlike in the non-member example, the member function assignGrades() must be declared before
the class Student can declare it to be a friend.

An entire class can be named a friend of another. This has the effect of making every member
function of the class a friend:

 class Student; // forward declaration
class Teacher
{
 protected:
 int noStudents;
 Student *pList[100];
 public:
 void assignGrades();
};
class Student
{
 friend class Teacher; // make entire class a friend
 public:
 // same public members as before...
 protected:
 int semesterHours; // hours earned toward graduation
 double gpa;
};

Now, any member function of Teacher has access to the protected members of Student. Declaring
one class a friend of the other inseparably binds the two classes together.

Chapter 15
“Why Do You Build Me Up, Just toTear Me

Down, Baby?”
In This Chapter

 Creating and destroying objects
 Declaring constructors and destructors
 Invoking constructors and destructors

Objects in programs are built and scrapped just like objects in the real world. If the class is to be
responsible for its well-being, it must have some control over this process. As luck would have it
(I suppose some planning was involved as well), C++ provides just the right mechanism. But first,
a discussion of what it means to create an object.

Creating Objects
Some people get a little sloppy in using the terms class and object. What’s the difference? What’s
the relationship?

I can create a class Dog that describes the relevant properties of man’s best friend. At my house,
we have two dogs. Thus, my single class Dog has two instances, Jack and Scruffy. (Well, I think
there are two instances — I haven’t seen Scruffy in a few days.)

 A class describes a type of thing. An object is one of those things. An object is an instance
of a class. There is only one class Dog, no matter how many dogs I have.

Objects are created and destroyed, but classes simply exist. My pets come and go, but the class
Dog (evolution aside) is perpetual.

Different types of objects are created at different times. Global objects are created when the
program first begins execution. Local objects are created when the program encounters their
declaration.

 A global object is one that is declared outside a function. A local object is one that is
declared within a function and is, therefore, local to the function. In the following example,
the variable me is global, and the variable notMe is local to the function pickOne():

 int me = 0;

void pickOne()
{
 int notMe;
}

 According to the rules, global objects are initialized to all zeros when the program starts
executing. Objects declared local to a function have no particular initial value. Having all
data members have a random state may not be a valid condition for all classes.

C++ allows the class to define a special member function that is invoked automatically when an
object of that class is created. This member function, called the constructor, initializes the object
to a valid initial state. In addition, the class can define a destructor to handle the destruction of the
object. These two functions are the topics of this chapter.

Using Constructors
The constructor is a member function that is called automatically when an object is created. Its
primary job is to initialize the object to a legal initial value for the class. (It's the job of the
remaining member functions to ensure that the state of the object stays legal.)

The constructor carries the same name as the class to differentiate it from the other members of the
class. The designers of C++ could have made up a different rule, such as: “The constructor must
be called init().” It wouldn’t have made any difference, as long as the compiler can recognize the
constructor. In addition, the constructor has no return type, not even void, because it is called only
automatically — if the constructor did return something, there would be no place to put it. A
constructor cannot be invoked manually.

Constructing a single object
With a constructor, the class Student appears as follows:

 // Constructor - example that invokes a constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;

 semesterHours = 0;
 gpa = 0.0;
 }
 // ...other public members...
 protected:
 int semesterHours;
 double gpa;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating a new Student object" << endl;
 Student s;

 cout << "Creating a new object off the heap" << endl;
 Student* pS = new Student;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

At the point of the declaration of s, the compiler inserts a call to the constructor
Student::Student(). Allocating a new Student object from the heap has the same effect, as
demonstrated by the output from the program:

 Creating a new Student object
constructing student
Creating a new object off the heap
constructing student
Press Enter to continue...

This simple constructor was written as an inline member function. Constructors can be written
also as outline functions, as shown here:

 class Student
{
 public:
 Student();
 // ...other public members...
 protected:
 int semesterHours;

 double gpa;
};
Student::Student()
{
 cout << "constructing student" << endl;
 semesterHours = 0;
 gpa = 0.0;
}

Constructing multiple objects
Each element of an array must be constructed on its own. For example, the following
ConstructArray program creates five Student objects by declaring a single five-element array:

 // ConstructArray - example that invokes a constructor
// on an array of objects
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;
 }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating an array of 5 Student objects"
 << endl;
 Student s[5];

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing the program generates the following output:

 Creating an array of 5 Student objects
constructing student
constructing student
constructing student
constructing student
constructing student
Press Enter to continue...

Constructing a duplex
If a class contains a data member that is an object of another class, the constructor for that class is
called automatically as well. Consider the following ConstructMembers example program. I
added output statements so that you can see the order in which the objects are invoked.

 // ConstructMembers - the member objects of a class
// are each constructed before the
// container class constructor gets
// a shot at it
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
 public:
 Course(){ cout << "constructing course" << endl;}
};

class Student
{
 public:
 Student()
 {
 cout << "constructing student" << endl;
 semesterHours = 0;
 gpa = 0.0;
 }
 protected:
 int semesterHours;
 double gpa;
};

class Teacher
{
 public:
 Teacher(){cout << "constructing teacher" << endl;}
 protected:
 Course c;
};
class TutorPair
{
 public:
 TutorPair()
 {
 cout << "constructing tutorpair" << endl;
 noMeetings = 0;
 }
 protected:
 Student student;
 Teacher teacher;
 int noMeetings;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 cout << "Creating TutorPair object" << endl;
 TutorPair tp;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following output:

 Creating TutorPair object
constructing student
constructing course
constructing teacher
constructing tutorpair
Press Enter to continue...

Creating the object tp in main automatically invokes the constructor for TutorPair. Before control

passes into the body of the TutorPair constructor, however, the constructors for the two-member
objects, student and teacher, are invoked.

The constructor for Student is called first because it is declared first. Then the constructor for
Teacher is called.

The member Teacher.c of class Course is constructed as part of building the Teacher object. The
Course constructor gets a shot first. Each object within a class must construct itself before the
class constructor can be invoked. Otherwise, the main constructor would not know the state of its
data members.

After all member data objects have been constructed, control returns to the open brace, and the
constructor for TutorPair is allowed to construct the remainder of the object.

Dissecting a Destructor
Just as objects are created, so are they destroyed (ashes to ashes, dust to dust). If a class can have
a constructor to set things up, it should also have a special member function to take the object
apart. This member is called the destructor.

Why you need the destructor
A class may allocate resources in the constructor; these resources need to be deallocated before
the object ceases to exist. For example, if the constructor opens a file, the file needs to be closed
before leaving that class or the program. Or, if the constructor allocates memory from the heap,
this memory must be freed before the object goes away. The destructor allows the class to do
these cleanup tasks automatically without relying on the application to call the proper member
functions.

Working with destructors
The destructor member has the same name as the class but with a tilde (~) added at the front. (C++
is being cute again — the tilde is the symbol for the logical NOT operator. Get it? A destructor is
a “not constructor.” Très clever.) Like a constructor, the destructor has no return type. For
example, the class Student with a destructor added appears as follows:

 class Student
{
 public:
 Student()
 {
 semesterHours = 0;
 gpa = 0.0;
 }
 ~Student()
 {
 // ...whatever assets are returned here...

 }
 protected:
 int semesterHours;
 double gpa;
};

The destructor is invoked automatically when an object is destroyed, or in C++ parlance, when an
object is destructed. That sounds sort of circular (“the destructor is invoked when an object is
destructed”), so I’ve avoided the term until now. For non-heap memory, you can also say, “when
the object goes out of scope.” A local object goes out of scope when the function returns. A global
or static object goes out of scope when the program terminates.

But what about heap memory? An object that has been allocated off the heap is destructed when
it's returned to the heap using the delete command. This is demonstrated in the following
DestructMembers program:

 // DestructMembers - this program both constructs and
// destructs a set of data members
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Course
{
 public:
 Course() { cout << "constructing course" << endl; }
 ~Course() { cout << "destructing course" << endl; }
};

class Student
{
 public:
 Student() { cout << "constructing student" << endl;}
 ~Student() { cout << "destructing student" << endl; }
};
class Teacher
{
 public:
 Teacher()
 {
 cout << "constructing teacher" << endl;
 pC = new Course;
 }

 ~Teacher()
 {
 cout << "destructing teacher" << endl;
 delete pC;
 }
 protected:
 Course* pC;
};
class TutorPair
{
 public:
 TutorPair(){cout << "constructing tutorpair" << endl;}
 ~TutorPair(){cout << "destructing tutorpair" << endl; }
 protected:
 Student student;
 Teacher teacher;
};

TutorPair* fn()
{
 cout << "Creating TutorPair object in function fn()"
 << endl;
 TutorPair tp;

 cout << "Allocating TutorPair off the heap" << endl;
 TutorPair* pTP = new TutorPair;

 cout << "Returning from fn()" << endl;
 return pTP;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // call function fn() and then return the
 // TutorPair object returned to the heap
 TutorPair* pTPReturned = fn();
 cout << "Return heap object to the heap" << endl;
 delete pTPReturned;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;

 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function main() invokes a function fn() that defines the object tp — this is to allow you to
watch the variable go out of scope when control exits the function. fn() also allocates heap
memory that it returns to main() where the memory is returned to the heap.

If you execute this program, it generates the following output:

 Creating TutorPair object in function fn()
constructing student
constructing teacher
constructing course
constructing tutorpair
Allocating TutorPair off the heap
constructing student
constructing teacher
constructing course
constructing tutorpair
Returning from fn()
destructing tutorpair
destructing teacher
destructing course
destructing student
Return heap object to the heap
destructing tutorpair
destructing teacher
destructing course
destructing student
Press Enter to continue...

Each constructor is called in turn as the TutorPair object is built up, starting from the smallest
data member and working up to the TutorPair::TutorPair() constructor function.

Two TutorPair objects are created. The first, tp, is defined locally to the function fn(); the
second, pTP, is allocated off the heap. tp goes out of scope and is destructed when control passes
out of the function. The heap memory whose address is returned from fn() is not destructed until
main() deletes it.

 When an object is destructed, the sequence of destructors is invoked in the reverse order
in which the constructors were called.

 C++ provides a separate keyword for deleting arrays, delete[]:

 Student* pS = new Student[5]; // construct 5 Students

// ...later in the program...
delete[] pS; // delete heap memory and invoke
 // destructor on each object

Only the delete[] keyword knows to invoke the destructor for each object allocated.

Chapter 16
Making Constructive Arguments

In This Chapter
 Making argumentative constructors
 Overloading the constructor
 Creating objects by using constructors
 Invoking member constructors
 Constructing the order of construction and destruction

A class represents a type of object in the real world. For example, in earlier chapters, I use the
class Student to represent the properties of a student. Just like students, classes are autonomous.
Unlike a student, a class is responsible for its own care and feeding — a class must keep itself in a
valid state at all times.

The default constructor presented in Chapter 15 isn't always enough. For example, a default
constructor can initialize the student ID to 0 so that it doesn't contain a random value; however, a
Student ID of 0 is probably not valid.

C++ programmers require a constructor that accepts some type of argument to initialize an object
to other than its default value. This chapter examines constructors with arguments.

Outfitting Constructors with Arguments
C++ enables programmers to define a constructor with arguments, as shown here:

 class Student
{
 public:
 Student(const char *pName);

 // ...class continues...
};

Using a constructor
Conceptually, the idea of adding an argument is simple. A constructor is a member function, and
member functions can have arguments. Therefore, constructors can have arguments.

Remember, though, that you don’t call the constructor like a normal function. Therefore, the only
time to pass arguments to the constructor is when the object is created. For example, the following

program creates an object s of the class Student by calling the Student(const char*) constructor.
The object s is destructed when the function main() returns.

 // ConstructorWArg - a class may pass along arguments
// to the members' constructors
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student(const char* pName)
 {
 cout << "constructing Student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0.0;
 }

 // ...other public members...
 protected:
 string name;
 int semesterHours;
 double gpa;
};

int main(int argcs, char* pArgs[])
{
 // create a student locally and one off of the heap
 Student s1("Jack");
 Student* pS2 = new Student("Scruffy");

 // be sure to delete the heap student
 delete pS2;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;

}

The Student constructor here looks like the constructors shown in Chapter 15 except for the
addition of the const char* argument pName. The constructor initializes the data members to their
empty start-up values, except for the data member name, which gets its initial value from pName
because a Student object without a name is not a valid student.

The object s1 is created in main(). The argument to be passed to the constructor appears in the
declaration of s1, right next to the name of the object. Thus, the student s1 is given the name Jack
in this declaration.

A second student is allocated off the heap on the very next line. The arguments to the constructor in
this case appear next to the name of the class.

 The third executable line in the program returns the newly allocated object to the heap
before exiting the program. This may not be necessary; for example, Windows or Unix will
close any files you may have open and return all heap memory when a program terminates
even if you forget to do so yourself. However, it's good practice to delete your heap memory
when you're finished.

 The const in the constructor declaration Student::Student(const char*) is necessary to
allow statements such as the following:

 Student s1("Jack");

The type of “Jack” is const char*. I could not pass a pointer to a constant character string to a
constructor declared Student(char*). A function, including a constructor, declared this way might
attempt to modify the character string, which would not be good. You cannot strip away the const
part of a declaration.

You can add const-ness, however, as in the following:

 void fn(char* pName)
{
 // the following is allowed even though constructor
 // declared Student(const char*)
 Student s(pName);
 // ...do whatever...
}

The function fn() passes a char* string to a constructor that promises to treat the string as if it were
a constant. No harm there!

Placing Too Many Demands on the Carpenter:

Overloading the Constructor
I can draw one more parallel between constructors and other more normal member functions in
this chapter: Constructors can be overloaded.

 Overloading a function means to define two functions with the same short name but with
different types of arguments. See Chapter 6 for the latest news on function overloading.

C++ chooses the proper constructor based on the arguments in the declaration of the object. For
example, the class Student can have all three constructors shown in the following snippet at the
same time:

 // OverloadConstructor - provide the class multiple
// ways to create objects by
// overloading the constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <string.h>

using namespace std;
class Student
{
 public:
 Student()
 {
 cout << "constructing student No Name" << endl;
 name = "No Name";
 semesterHours = 0;
 gpa = 0.0;
 }
 Student(const char *pName)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0;
 }
 Student(const char *pName, int xfrHours, float xfrGPA)
 {
 cout << "constructing student " << pName << endl;
 name = pName;

 semesterHours = xfrHours;
 gpa = xfrGPA;
 }

 protected:
 string name;
 int semesterHours;
 float gpa;
};

int main(int argcs, char* pArgs[])
{
 // the following invokes three different constructors
 Student noName;
 Student freshman("Marian Haste");
 Student xferStudent("Pikup Andropov", 80, 2.5);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Because the object noName appears with no arguments, it’s constructed using the constructor
Student::Student(). This constructor is called the default constructor. The freshman is constructed
using the constructor that has only a const char* argument, and the xferStudent uses the
constructor with three arguments.

Notice the similarity in all three constructors. The number of semester hours and the GPA default
to 0 if only the name is provided. Otherwise, there is no difference between the two constructors.
You wouldn't need both constructors if you could just specify a default value for the two
arguments.

C++ enables you to specify a default value for a function argument in the declaration to be used in
the event that the argument is not present. By adding defaults to the last constructor, all three
constructors can be combined into one. For example, the following class combines all three
constructors into a single, clever constructor:

 // ConstructorWDefaults - multiple constructors can often
// be combined with the definition
// of default arguments
//
#include <cstdio>

#include <cstdlib>
#include <iostream>
using namespace std;

class Student

{
 public:
 Student(const char *pName = "No Name",
 int xfrHours = 0,
 double xfrGPA = 0.0)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = xfrHours;
 gpa = xfrGPA;
 }

 protected:
 string name;
 int semesterHours;
 double gpa;
};
// ...the rest is the same...

Now all three objects are constructed using the same constructor; defaults are provided for non-
existent arguments in noName and freshman.

 A slightly more flexible alternative added in the 2011 standard is to invoke one constructor
from another as shown in ConstructorsCallingEachOther. This is known as delegating
constructors:

 // ConstructorsCallingEachOther - new for 2011,
// one constructor can invoke another constructor
// in the same class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student

{
 public:
 Student(const char *pName,
 int xfrHours,
 double xfrGPA)
 {
 cout << "constructing student " << pName << endl;
 name = pName;
 semesterHours = xfrHours;
 gpa = xfrGPA;
 }
 Student() : Student("No Name", 0, 0.0) {}
 Student(const char *pName): Student(pName, 0, 0.0){}

 protected:
 string name;
 int semesterHours;
 double gpa;
};
// ...the rest is the same as before...

Here the declaration Student noName invokes the no argument constructor which turns around and
calls the generic constructor, providing default arguments. The Student freshman declaration
invokes the Student(const char*) constructor.

This is more flexible because you can default arguments other than the last one. In addition, you
have more control over how arguments are defaulted. For example, it makes no sense to construct
a student with semester hours but no GPA. This version would not allow such an object to be
constructed since no Student(const char*, int) is provided.

 The somewhat bizarre syntax will seem a lot more reasonable by the time you reach the end
of this chapter.

Defaulting Default Constructors
As far as C++ is concerned, every class must have a constructor; otherwise, you can’t create
objects of that class. If you don’t provide a constructor for your class, C++ should probably just
generate an error, but it doesn’t. To provide compatibility with existing C code, which knows
nothing about constructors, C++ automatically provides a default constructor (sort of a default
default constructor).

If you define a constructor for your class, C++ doesn’t provide the automatic default constructor
on its own. By creating a constructor, the author is in effect telling C++ that the default constructor

is not good enough.

The following code snippets help demonstrate this point. This is legal:

 class Student
{

 string name;
};

int main(int argcs, char* pArgs[])
{
 Student noName;
 return 0;
}

The automatically provided default constructor invokes the default string constructor to create an
empty name object. The following code snippet does not compile properly:

 class Student
{
 public:
 Student(const char *pName) {name = pName;}

 string name;
};

int main(int argcs, char* pArgs[])
{
 Student noName; // doesn't compile
 return 0;
}

The seemingly innocuous addition of the Student(const char*) constructor precludes C++ from
automatically providing a Student() constructor with which to build object noName.

 The C++ '11 standard allows you to "get the default constructor back" via the new
keyword default, as follows:

 class Student
{
 public:
 Student(const char *pName) { name = pName; }
 Student() = default;

 string name;
};

int main(int argcs, char* pArgs[])
{
 Student noName;
 return 0;
}

The default keyword says, in effect, “I know that I defined a constructor but I still want my
automatic default constructor back.”

The '11 standard also allows a default method such as the default constructor to be explicitly
removed using the new keyword delete:

 class Student
{
 public:
 Student() = delete; // remove the default constructor

 string name;
};

Constructing Class Members
In the previous examples, all data members are of simple types, such as int and double. With
simple types, it’s sufficient to assign a value to the variable within the constructor. Problems arise
when initializing certain types of data members, however.

Constructing a complex data member
Members of a class have the same problems as any other variable. It makes no sense for a Student
object to have some default ID of 0. This is true even if the object is a member of a class.
Consider the following example that creates a new class, StudentId, to manage the student
identification numbers instead of relying on a plain ol' integer variable:

 //
// ConstructingMembers - a class may pass along arguments
// to the members' constructors
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

int nextStudentId = 1000; // first legal Student ID

class StudentId
{
 public:
 // default constructor assigns id's sequentially
 StudentId()
 {
 value = nextStudentId++;
 cout << "Take next student id " << value << endl;
 }

 // int constructor allows user to assign id
 StudentId(int id)
 {
 value = id;
 cout << "Assign student id " << value << endl;
 }
 protected:
 int value;
};

class Student
{
 public:
 Student(const char* pName)
 {
 cout << "constructing Student " << pName << endl;
 name = pName;
 semesterHours = 0;
 gpa = 0.0;
 }

 // ...other public members...
 protected:
 string name;
 int semesterHours;
 double gpa;
 StudentId id;
};

int main(int argcs, char* pArgs[])
{
 // create a couple of students
 Student s1("Jack");

 Student s2("Scruffy");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

A student ID is assigned to each student as the Student object is constructed. In this example, the
default constructor for StudentId assigns IDs sequentially using the global variable nextStudentId
to keep track.

The Student class invokes the default constructor for the two students s1 and s2. The output from
the program shows that this is working properly:

 Take next student id 1000
constructing Student Jack
Take next student id 1001
constructing Student Scruffy
Press Enter to continue...

Notice that the message from the StudentId constructor appears before the output from the Student
constructor. This implies that the constructor StudentId was invoked even before the Student
constructor got underway.

If the programmer does not provide a constructor, the default constructor provided by C++
automatically invokes the default constructors for data members. The same is true come harvesting
time. The destructor for the class automatically invokes the destructor for data members that have
destructors. The C++–provided destructor does the same.

Okay, this is all great for the default constructor. But what if you want to invoke a constructor
other than the default? Where do you put the object? The StudentId class provides a second
constructor that allows the student ID to be assigned to any arbitrary value. The question is, how
do you invoke it?

Let me first show you what doesn’t work. Consider the following program segment (only the
relevant parts are included here — the entire program, ConstructSeparateID, is with the material
that accompanies this book at www.dummies.com/extras/cplusplus):

 class Student
{
 public:
 Student(const char *pName, int ssId)
 {
 cout << "constructing student " << pName << endl;

http://www.dummies.com/extras/cplusplus

 name = pName;
 // don't try this at home kids. It doesn't work
 StudentId id(ssId); // construct a student id
 }
 protected:
 string name;
 StudentId id;
};

int main(int argcs, char* pArgs[])
{
 Student s("Jack", 1234);
 cout << "This message from main" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
}

Within the constructor for Student, the programmer (that’s me) has (cleverly) attempted to
construct a StudentId object named id. (I also added a destructor to StudentId that does nothing
but output the ID of the object being destroyed.)

If you look at the output from this program, you can see the problem:

 take next student id 1000
constructing student Jack
assign student id 1234
destructing 1234
This message from main
Press Enter to continue...

We seem to be constructing two StudentId objects: The first one is created with the default
constructor as before. After control enters the constructor for Student, a second StudentId is
created with the assigned value of 1234. Mysteriously, this 1234 object is then destroyed as soon
as the program exits the Student constructor.

The explanation for this rather bizarre behavior is clear. The data member id already exists by the
time the body of the constructor is entered. Instead of constructing the existing data member id, the
declaration provided in the constructor creates a local object of the same name. This local object
is destructed upon returning from the constructor.

Somehow, we need a different mechanism to indicate “construct the existing member; don’t create
a new one.” This mechanism needs to appear after the function argument list but before the open

brace. C++ provides a construct for this, as shown in the following subset taken from the
ConstructDataMembers program (the only change between this program and its predecessor is to
the Student class constructor — the entire program is with the accompanying material at
www.dummies.com/extras/cplusplus):

 class Student
{
 public:
 Student(const char *pName, int ssId)
 : name(pName), id(ssId)
 {
 cout << "constructing student " << pName << endl;
 }
 protected:
 string name;
 StudentId id;
};

Notice in particular the first line of the constructor. Here’s something you haven't seen before. The
: means that what follows are calls to the constructors of data members of the current class. To the
C++ compiler, this line reads “Construct the members name and id using the arguments pName
and ssId, respectively, of the Student constructor. Whatever data members are not called out in
this fashion are constructed using their default constructor.”

 The string type is actually a conventional class defined in an include file which is
included by iostream. Programs prior to this example have been using the default string
constructor to create an empty name and then copying the student's name into the object
within the body of the constructor. It is more efficient to assign the string object a value when
it's created, if possible.

This new program generates the expected result:

 assign student id 1234
constructing student Jack
This message from main
Press Enter to continue...

 Now you can see where the syntax for invoking one constructor from another came from!

Combining this with member initialization

 So what happens when a constructor competes with a C++ '11-style member initializer?

http://www.dummies.com/extras/cplusplus

Consider the following contrived example:

 // ConstructMembersWithInitializers - this program
// demonstrates what happens when a data member
// with an initializer is constructed
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class StudentId
{
 public:
 StudentId(int id) : value(id)
 {
 cout << "id = " << value << endl;
 }

 protected:
 int value;
};

int nextStudentId = 1000;
class Student
{
 public:
 Student(const char *pName, int ssId)
 : name(pName), id(ssId)
 {
 cout << "constructing student " << pName << endl;
 }
 Student(const char *pName): name(pName)
 {
 cout << "constructing student " << pName << endl;
 }
 protected:
 string name;
 StudentId id = nextStudentId++;
};

int main(int argcs, char* pArgs[])
{
 Student s1("Jack", 1234);

 Student s2("Scruffy");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here I have provided the StudentID class with a single constructor. It is now up to the Student
class to decide which id to use. The output from this program is enlightening:

 id = 1234
constructing student Jack
id = 1000
constructing student Scruffy
Press Enter to continue...

In the first case, the student Jack is created using the student ID 1234 provided in the constructor.
The student Scruffy accepts the default student ID, the next value starting with 1000. But this is
curious — if the member initializer had been invoked when Jack was constructed, then Scruffy
should have been assigned the ID 1001.

 The moral to this story is that the member initializer (that's the StudentId id =
nextStudentId++) is ignored if the member is constructed in the class constructor.

Constructing a constant data member
Argument construction solves a similar problem with const data members as shown in the
following example:

 class Mammal
{
 public:
 Mammal(int nof) : numberOfFeet(nof) {}
 protected:
 const int numberOfFeet;
};

Ostensibly, a given Mammal has a fixed number of feet (barring amputation). The number of feet
can, and should, be declared const. This constructor definition assigns a value to the variable
numberOfFeet when the object is created. The numberOfFeet cannot be modified once it's been
declared and initialized.

Reconstructing the Order of Construction
When there are multiple objects, all with constructors, programmers usually don’t care about the
order in which things are built. If one or more of the constructors has side effects, however, the
order can make a difference.

The rules for the order of construction are as follows:

Local and static objects are constructed in the order in which their declarations are invoked.
Static objects are constructed only once.
All global objects are constructed before main().
Global objects are constructed in no particular order.
Members are constructed in the order in which they are declared in the class within a given
access type (that is, all the public members are declared in order declared and all the
protected members in the order that they're declared)
Objects are destructed in the opposite order in which they were constructed.

 A static variable is a variable that is local to a function but retains its value from one
function invocation to the next. A global variable is a variable declared outside a function.

Now we'll consider each of the preceding rules in turn.

Local objects construct in order
Local objects are constructed in the order in which the program encounters their declaration.
Normally, this is the same as the order in which the objects appear in the function, unless the
function jumps around particular declarations. (By the way, jumping around declarations is a bad
thing. It confuses the reader and the compiler.)

Static objects construct only once
Static objects are similar to local variables, except that they are constructed only once. C++ waits
until the first time control passes through the static’s declaration before constructing the object.
Consider the following trivial ConstructStatic program:

 // ConstructStatic - demonstrate that statics are only
// constructed once
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class DoNothing
{
 public:
 DoNothing(int initial) : nValue(initial)
 {
 cout << "DoNothing constructed with a value of "
 << initial << endl;
 }
 ~DoNothing()
 {
 cout << "DoNothing object destructed" << endl;
 }
 int nValue;
};
void fn(int i)
{
 cout << "Function fn passed a value of " << i << endl;
 static DoNothing dn(i);
}

int main(int argcs, char* pArgs[])
{
 fn(10);
 fn(20);
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following results:

 Function fn passed a value of 10
DoNothing constructed with a value of 10
Function fn passed a value of 20
Press Enter to continue...
DoNothing object destructed

Notice that the message from the function fn() appears twice, but the message from the constructor
for DoNothing appears only the first time fn() is called. This indicates that the object is
constructed the first time that fn() is called but not thereafter. Also notice that the destructor is not
invoked until the program returns from main() as part of the program shutdown process.

All global objects construct before main()

All global variables go into scope as soon as the program starts. Thus, all global objects are
constructed before control is passed to main().

 Initializing global variables can cause real debugging headaches. Some debuggers try to
execute up to main() as soon as the program is loaded and before they hand over control to
the user. This can be a problem because the constructor code for all global objects has
already been executed by the time you can wrest control of your program. If one of these
constructors has a fatal bug, you never even get a chance to find the problem. In this case, the
program appears to die before it even starts!

 The best way I've found to detect this type of problem is to set a breakpoint in every
constructor that you even remotely suspect as well as the first statement in main(). You will
hit a breakpoint for each global object declared as soon as you start the program. Press
Continue after each breakpoint until the program crashes — now you know that you pressed
Continue once too often. Restart the program and repeat the process, but stop on the
constructor that caused the program to crash. You can now single-step through the constructor
until you find the problem. If you make it all the way to the breakpoint in main(), the program
did not crash while constructing global objects.

Global objects construct in no particular order
Figuring out the order of construction of local objects is easy. An order is implied by the flow of
control. With globals, no such flow is available to give order. All globals go into scope
simultaneously — remember? Okay, you argue, why can’t the compiler just start at the top of the
file and work its way down the list of global objects?

That would work fine for a single file (and I presume that’s what most compilers do). Most
programs in the real world consist of several files that are compiled separately and then linked.
Because the compiler has no control over the order in which these files are linked, it cannot affect
the order in which global objects are constructed from file to file.

Most of the time, the order of global construction is pretty ho-hum stuff. Once in a while, though,
global variables generate bugs that are extremely difficult to track down. (It happens just often
enough to make it worth mentioning in a book.)

Consider the following example:

 class Student
{
 public:
 Student (int id) : studentId(id) {}
 const int studentId;
};
class Tutor

{
 public:
 Tutor(Student& s) : tutoredId(s.studentId) {}
 int tutoredId;
};

// set up a student
Student randy(1234);

// assign that student a tutor
Tutor janet(randy);

Here the constructor for Student assigns a student ID. The constructor for Tutor records the ID of
the student to help. The program declares a student randy and then assigns that student a tutor
janet.

The problem is that the program makes the implicit assumption that randy is constructed before
janet. Suppose it were the other way around. Then janet would be constructed with a block of
memory that had not yet been turned into a Student object and, therefore, had garbage for a student
ID.

 The preceding example is not too difficult to figure out and more than a little contrived.
Nevertheless, problems deriving from global objects being constructed in no particular order
can appear in subtle ways. To avoid this problem, don’t allow the constructor for one global
object to refer to the contents of another global object.

Members construct in the order in which they are declared
Members of a class are constructed according to the order in which they’re declared within the
class. This isn’t quite as obvious as it may sound. Consider the following example:

 class Student
{
 public:
 Student (int id, int age) : nAge(age), nId(id){}
 const int nId;
 const int nAge;
 double dAverage = 0.0;
};

In this example, nId is constructed before nAge, even though nId appears second in the
constructor’s initialization list because it appears before nAge in the class definition. The data
member dAverage is constructed last for the same reason. The only time you might detect a
difference in the construction order is when both data members are an instance of a class that has a
constructor that has some mutual side effect.

Destructors destruct in the reverse order of the constructors
Finally, no matter in what order the constructors kick off, you can be assured that the destructors
are invoked in the reverse order. (It’s nice to know that at least one rule in C++ has no ifs, ands, or
buts.)

Constructing Arrays
When you declare an array, each element of the array must be constructed. For example, the
following declaration calls the default Student constructor five times, once for each member of the
array:

 Student s[5];

 The 2011 standard allows you to invoke a constructor other than the default constructor
using an initializer list, as shown in this truncated example program (the full program is
available in the online material at www.dummies.com/extras/cplusplus):

 //
// ConstructArray - construct an array of objects
//

// ...same Student class with overloaded constructors...

int main(int argcs, char* pArgs[])
{
 // the following invokes three different constructors
 Student s[]{"Marian Haste", "Pikup Andropov"};
 Student t[]{{"Jack", 0, 0.0}, {"Scruffy", 12, 2.5}};

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The array s is created with two members by calling the Student(const char*) constructor twice.
The array t is constructed with the Student(const char*, int, double) constructor. The output of
this program appears as follows:

 constructing freshman Marian Haste
constructing freshman Pikup Andropov

http://www.dummies.com/extras/cplusplus

constructing transfer Jack
constructing transfer Scruffy
Press Enter to continue...

 A string of objects contained within braces is known as an initializer list.

Constructors as a Form of Conversion
C++ views constructors with a single argument as a way of converting from one type to another.
Consider a user-defined type Complex designed to represent complex numbers. Without getting
too technical (for me, not for you), there is a natural conversion between real numbers and
complex numbers just like the conversion from integers to real numbers, as in the following
example:

 double d = 1; // this is legal
Complex c = d; // this should be allowed as well

In fact, C++ looks for ways to try to make sense out of statements like this. If the class Complex
has a constructor that takes as its argument a double, C++ will use that constructor as a form of
conversion, as if the preceding statement had been written as follows:

 double d = 1;
Complex c(d);

Some constructor-introduced conversions do not make sense. For example, you may not want C++
to convert an integer into a Student object just because a Student(int) constructor exists.
Unexpected conversions can lead to strange run-time errors when C++ tries to make sense out of
simple coding mistakes.

 The programmer can use the keyword explicit to avoid creating unexpected and unintended
conversion paths. A constructor marked explicit cannot be used as an implicit conversion
path:

 class Student
{
 public:
 // the following "No Name" constructor cannot be used
 // as an implicit conversion path from int to Student
 explicit Student(int nStudentID);
};

Student s = 1; // generates compiler error

Student t(123456); // this is still allowed

The declaration of s does not implicitly invoke the Student(int) constructor since it is flagged as
“explicitly invokable only.” The explicit invoking of the constructor to create the object t is still
okay.

A complete TypeConversion program to demonstrate this principle is included with the online
material at www.dummies.com/extras/cplusplus.

http://www.dummies.com/extras/cplusplus

Chapter 17
The Copy/Move Constructor

In This Chapter
 Introducing the copy/move constructor
 Making copies
 Having copies made for you automatically
 Creating shallow copies versus deep copies
 Avoiding all those copies with a move constructor

The constructor is a special function that C++ invokes automatically when an object is created to
allow the object to initialize itself. Chapter 15 introduces the concept of the constructor, whereas
Chapter 16 describes other types of constructors. This chapter examines two particular variations
of the constructor known as the copy and move constructors.

Copying an Object
A copy constructor is the constructor that C++ uses to make copies of objects. It carries the name
X::X(const X&), where X is the name of the class. That is, it’s the constructor of class X, which
takes as its argument a reference to an object of class X. Now, I know that this sounds really
useless, but just give me a chance to explain why C++ needs such beasties.

 The move constructor is unique to C++ 2011. Most of this chapter concerns the copy
constructor. I present the details of the move constructor towards the end of this chapter.

Why you need the copy constructor
Think for a moment about what happens when you call a function like the following:

 void fn(Student fs)
{
 // ...same scenario; different argument...
}
int main(int argcs, char* pArgs[])
{
 Student ms;
 fn(ms);
 return 0;
}

In the call to fn(), C++ passes a copy of the object ms and not the object itself.

Now consider what it means to create a copy of an object. First, it takes a constructor to create an
object, even a copy of an existing object. C++ could create a default copy constructor that copies
the existing object into the new object one byte at a time. That’s what older languages such as C
do. But what if the class doesn't want a simple copy of the object? What if something else is
required? (Ignore the “why?” for a little while.) The class needs to be able to specify exactly how
the copy should be created.

Thus, C++ uses a copy constructor in the preceding example to create a copy of the object ms on
the stack during the call of function fn(). This particular copy constructor would be
Student::Student(Student&) — say that three times quickly.

Using the copy constructor
The best way to understand how the copy constructor works is to see one in action. Consider the
following CopyConstructor program:

 // CopyConstructor - demonstrate a copy constructor
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 // conventional constructor
 Student(const char *pName = "no name", int ssId = 0)
 : name(pName), id(ssId)
 { cout << "Constructed " << name << endl; }

 // copy constructor
 Student(const Student& s)
 : name("Copy of " + s.name), id(s.id)
 { cout << "Constructed " << name << endl; }

 ~Student() { cout << "Destructing " << name << endl; }

 protected:
 string name;
 int id;
};

// fn - receives its argument by value

void fn(Student copy)
{
 cout << "In function fn()" << endl;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 Student scruffy("Scruffy", 1234);
 cout << "Calling fn()" << endl;
 fn(scruffy);
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from executing this program appears as follows:

 Constructed Scruffy
Calling fn()
Constructed Copy of Scruffy
In function fn()
Destructing Copy of Scruffy
Back in main()
Press Enter to continue...

The normal Student constructor generates the first message from the declaration on the first line of
main() about creating scruffy. main() then outputs the Calling … message before calling fn(). As
part of the function call process, C++ invokes the copy constructor to make a copy of scruffy to
pass to fn(). The copy constructor prepends the string “Copy of” to the student's name before
displaying it on the console. The function fn() outputs the In function … message. The copied
Student object copy is destructed at the return from fn(). (You can tell it's the copy because of the
“Copy of” prepended to the front.) The original object, scruffy, is destructed at the end of main().

The Automatic Copy Constructor
Like the default constructor, the copy constructor is important; important enough that C++ thinks no
class should be without one. If you don’t provide your own copy constructor, C++ generates one
for you. (This differs from the default constructor that C++ provides unless your class has
constructors defined for it.)

The copy constructor provided by C++ performs a member-by-member copy of each data member.
You can see this in the following DefaultCopyConstructor program. (I left out the definition of the
Student class to save space — it's identical to that shown in the CopyConstructor program. The
entire DefaultCopyConstructor program is available online at
www.dummies.com/extras/cplusplus.)

 class Tutor
{
 public:
 Tutor(Student& s)
 : student(s), id(0)
 { cout << "Constructing Tutor object" << endl; }
 protected:
 Student student;
 int id;
};

void fn(Tutor tutor)
{
 cout << "In function fn()" << endl;
}

int main(int argcs, char* pArgs[])
{
 Student scruffy("Scruffy");
 Tutor tutor(scruffy);
 cout << "Calling fn()" << endl;
 fn(tutor);
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Executing this program generates the following output:

 Constructed Scruffy
Constructed Copy of Scruffy
Constructing Tutor object
Calling fn()

http://www.dummies.com/extras/cplusplus

Constructed Copy of Copy of Scruffy
In function fn()
Destructing Copy of Copy of Scruffy
Back in main()
Press Enter to continue...

Destructing Copy of Scruffy
Destructing Scruffy

Constructing the scruffy object generates the first output message from the “plain Jane”
constructor. The constructor for the tutor object invokes the Student copy constructor to generate
its own Student data member and then outputs its own message. This accounts for the next two
lines of output.

The program then passes a copy of the Tutor object to the function fn(). Because the Tutor class
does not define a copy constructor, the program invokes the default copy constructor to make a
copy to pass to fn().

The default Tutor copy constructor invokes the copy constructor for each data member. The copy
constructor for int does nothing more than copy the value. You've already seen how the Student
copy constructor works. This is what generates the Constructed Copy of Copy of Scruffy message.
The destructor for the copy is invoked as part of the return from function fn(). The final destructors
are invoked when the program returns from main().

Creating Shallow Copies versus Deep Copies
Performing a member-by-member copy seems the obvious thing to do in a copy constructor. Other
than adding the capability to tack on silly things such as Copy of to the front of students’ names,
when would you ever want to do anything but a member-by-member copy?

Consider what happens if the constructor allocates an asset, such as memory off the heap. If the
copy constructor simply makes a copy of that asset without allocating its own asset, you end up
with a troublesome situation: two objects thinking they have exclusive access to the same asset.
This becomes nastier when the destructor is invoked for both objects and they both try to put the
same asset back. To make this more concrete, consider the following example class:

 // ShallowCopy - performing a byte-by-byte (shallow) copy
// is not correct when the class holds assets
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Person
{

 public:
 Person(const char *pN)
 {
 cout << "Constructing " << pN << endl;
 pName = new string(pN);
 }
 ~Person()
 {
 cout << "Destructing " << pName
 << " (" << *pName << ")" << endl;
 *pName = "already destructed memory";
 // delete pName;
 }
protected:
 string *pName;
};

void fn()
{
 // create a new object
 Person p1("This_is_a_very_long_name");

 // copy the contents of p1 into p2
 Person p2(p1);
}

int main(int argcs, char* pArgs[])
{
 cout << "Calling fn()" << endl;
 fn();
 cout << "Back in main()" << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program generates the following output:

 Calling fn()
Constructing This_is_a_very_long_name

Destructing 0x3f2bb8 (This_is_a_very_long_name)
Destructing 0x3f2bb8 (already destructed memory)
Back in main()
Press Enter to continue...

The constructor for Person allocates memory off the heap to store the person’s name. The
destructor would normally return this memory to the heap using the delete keyword; however, in
this case, I've replaced the call to delete with a statement that replaces the name with a message.
The main program calls the function fn(), which creates one person, p1, and then makes a copy of
that person, p2. Both objects are destructed automatically when the program returns from the
function.

Only one constructor output message appears when this program is executed. That’s not too
surprising because the C++–provided copy constructor used to build p2 performs no output. The
Person destructor is invoked twice, however, as both p1 and p2 go out of scope. The first
destructor outputs the expected This_is_a_very_long_name. The second destructor indicates that
the memory has already been deleted. Notice also that the address of the memory block is the same
for both objects (0x3F2BB8).

 If the program really were to delete the name, the program would become unstable after
the second delete and might not even complete properly without crashing.

The problem is shown graphically in Figure 17-1. The object p1 is copied into the new object p2,
but the assets are not. Thus, p1 and p2 end up pointing to the same assets (in this case, heap
memory). This is known as a shallow copy because it just “skims the surface,” copying the
members themselves.

Figure 17-1: Shallow copy of p1 to p2.

The solution to this problem is demonstrated visually in Figure 17-2. This figure represents a copy
constructor that allocates its own assets to the new object.

Figure 17-2: Deep copy of p1 to p2.

The following shows an appropriate copy constructor for class Person, the type you've seen up
until now. (This class is embodied in the program DeepCopy, which is on this book's online
material at www.dummies.com/extras/cplusplus.)

 class Person
{
 public:
 Person(const char *pN)
 {
 cout << "Constructing " << pN << endl;
 pName = new string(pN);
 }
 Person(Person& person)
 {
 cout << "Copying " << *(person.pName) << endl;
 pName = new string(*person.pName);
 }
 ~Person()
 {
 cout << "Destructing " << pName
 << " (" << *pName << ")" << endl;
 *pName = "already destructed memory";
 // delete pName;
 }
protected:
 string *pName;
}

Here you see that the copy constructor allocates its own memory block for the name and then
copies the contents of the source object name into this new name block. This is a situation similar
to that shown in Figure 17-2. Deep copy is so named because it reaches down and copies all the

http://www.dummies.com/extras/cplusplus

assets. (Okay, the analogy is pretty strained, but that’s what they call it.)

The output from this program is as follows:

 Calling fn()
Constructing This_is_a_very_long_name
Copying This_is_a_very_long_name
Destructing 0x9f2be0 (This_is_a_very_long_name)
Destructing 0x9f2ba0 (This_is_a_very_long_name)
Back in main()
Press Enter to continue...

The destructor for Person now indicates that the string pointers in p1 and p2 don't point to the
same block of memory: the addresses of the two objects are different, and the name in the version
owned by the copy has not been overwritten indicating that it's been deleted.

 The real ~Person destructor should delete pName.

It’s a Long Way to Temporaries
Passing arguments by value to functions is the most obvious but not the only example of the use of
the copy constructor. C++ creates a copy of an object under other conditions as well.

Consider a function that returns an object by value. In this case, C++ must create a copy using the
copy constructor. This situation is demonstrated in the following code snippet:

 Student fn(); // returns object by value
int main(int argcs, char* pArgs[])
{
 Student s;
 s = fn(); // call to fn() creates temporary

 // how long does the temporary returned by fn()last?
 return 0;
}

The function fn() returns an object by value. Eventually, the returned object is copied to s, but
where does it reside until then?

C++ creates a temporary object into which it stuffs the returned object. “Okay,” you say. “C++
creates the temporary, but how does it know when to destruct it?” Good question. In this example,
it doesn’t make much difference because you’ll be through with the temporary when the copy
constructor copies it into s. But what if s is defined as a reference? It makes a big difference how
long temporaries live because refS exists for the entire function:

 int main(int argcs, char* pArgs[])

{
 Student& refS = fn();
 // ...now what?...
 return 0;
}

Temporaries created by the compiler are valid throughout the extended expression in which they
were created and no further.

In the following function, I mark the point at which the temporary is no longer valid:

 Student fn1();
int fn2(Student&);
int main(int argcs, char* pArgs[])
{
 int x;
 // create a Student object by calling fn1().
 // Pass that object to the function fn2().
 // fn2() returns an integer that is used in some
 // silly calculation.
 // All this time the temporary returned from fn1()
 // remains valid.
 x = 3 * fn2(fn1()) + 10;

 // the temporary returned from fn1() is now no longer
valid
 // ...other stuff...
 return 0;
}

This makes the reference example invalid because the object may go away before refS does,
leaving refS referring to a non-object.

Avoiding temporaries, permanently
It may have occurred to you that all this copying of objects hither and yon can be a bit time-
consuming. What if you don’t want to make copies of everything? The most straightforward
solution is to pass objects to functions and return objects from functions by reference. Doing so
avoids the majority of temporaries.

But what if you’re still not convinced that C++ isn’t out there craftily constructing temporaries that
you know nothing about? Or what if your class allocates unique assets that you don’t want copied?
What do you do then?

You can add an output statement to your copy constructor. The presence of this message when you
execute the program warns you that a copy has just been made.

A more clever approach is to declare the copy constructor protected, as follows:

 class Student
{
 protected:
 Student(Student&s){}

 public:
 // ...everything else normal...
};

 The C++ '11 standard also allows the programmer to delete the copy constructor:

 class Student
{
 Student(Student&s) = delete;

 // ...everything else normal...
};

Either declaring the copy constructor protected or deleting it entirely precludes any external
functions, including C++, from constructing a copy of your Student objects. If no one can invoke
the copy constructor, no copies are being generated. Voilà.

The move constructor
Under certain conditions, C++ can create a copy of an object that is used only for the duration of a
single statement. Such objects, known as temporaries, are destructed as soon as the expression is
completed. It doesn't make sense to make copies of temporary objects that are about to be
destructed anyway.

 C++ '11 allows the programmer to create a constructor known as a move constructor that
simply moves assets from the source to the destination rather than making unnecessary copies.
Move constructors have the format X::X(X&&). This is a new use of “&&”.

Consider the following highly contrived example.

 C++ '11 includes several return optimizations to avoid the creation of unnecessary copies
of objects which this example has to defeat to demonstrate the move constructor. You'll see
much less contrived examples in the discussion of overloading operators in Chapter 22.

 //
// MoveCopy - demonstrate the principle of moving a
// temporary rather than creating a copy

//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Person
{
 public:
 Person(const char *pN)
 {
 pName = new string(pN);
 cout << "Constructing " << *pName << endl;
 }
 Person(Person& p)
 {
 cout << "Copying " << *p.pName << endl;
 pName = new string("Copy of ");
 *pName += *p.pName;
 }
 Person(Person&& p)
 {
 cout << "Moving " << *p.pName << endl;
 pName = p.pName;
 p.pName = nullptr;
 }
 ~Person()
 {
 if (pName)
 {
 cout << "Destructing " << *pName << endl;
 delete pName;
 }
 else
 {
 cout << "Destructing null object" << endl;
 }
 }
protected:
 string* pName;
};

Person fn2(Person p)

{
 cout << "Entering fn2" << endl;
 return p;
}

Person fn1(char* pName)
{
 cout << "Entering fn1_ << endl;
 return fn2(*new Person(pName));
}

int main(int argcs, char* pArgs[])
{
 Person s(fn1("Scruffy"));

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice how the move constructor assigns the pName pointer from the source object p and then
zeroes out that pointer so that the destructor does not return the memory when the temporary is
destructed. This is much more efficient than allocating yet another string object off of the heap and
copying the contents of p.pName to this new string.

The output from this program appears as follows:

 Entering fn1
Constructing Scruffy
Copying Scruffy
Entering fn2
Moving Copy of Scruffy
Destructing null object
Press Enter to continue...

Destructing Copy of Scruffy

In this case, fn1() creates a Person object. It then copies this object in the call to fn2() using the
copy constructor. The function fn2() does nothing more than return a copy of this object to fn1();
however, this copy is just a temporary object that fn1() returns to main(). Rather than use the copy
constructor to create a “Copy of copy of Scruffy,” C++ '11 invokes the move constructor to take
the contents of the temporary object. When this temporary is subsequently destructed, it is a “null

object” because its pName has been taken away and reassigned.

 You don't have to create a move constructor. The program would have worked just fine,
albeit a hair slower, with just the copy constructor. Move constructors should be considered
an advanced topic. You will see examples that are less contrived in Chapter 22.

Chapter 18
Static Members: Can Fabric Softener

Help?
In This Chapter

 Declaring static member data
 Defining and using static member functions
 Understanding why my static member function can’t call my other member functions

By default, data members are allocated on a per-object basis. For example, each person has his or
her own name. You can also declare a member to be shared by all objects of a class by declaring
that member static. The term static applies to both data members and member functions, although
the meaning is slightly different. This chapter describes both types, beginning with static data
members.

Defining a Static Member
The programmer can make a data member common to all objects of the class by adding the
keyword static to the declaration. Such members are called static data members. (I would be a
little upset if they were called something else.)

Why you need static members
Most properties are properties of the object. Using the well-worn (one might say, threadbare)
student example, properties such as name, ID number, and courses are specific to the individual
student. However, all students share some properties — for example, the number of students
currently enrolled, the highest grade of all students, or a pointer to the first student in a linked list.

It’s easy enough to store this type of information in a common, ordinary, garden-variety global
variable. For example, you could use a lowly int variable to keep track of the number of Student
objects. The problem with this solution, however, is that global variables are outside the class.
It’s like putting the voltage regulator for my microwave outside the enclosure. Sure, I could do it,
and it would probably work — the only problem is that I wouldn't be too happy if my dog got into
the wires and I had to peel him off the ceiling (the dog wouldn’t be thrilled about it, either).

If a class is going to be held responsible for its own state, objects such as global variables must be
brought inside the class, just as the voltage regulator must be inside the microwave lid, away from
prying paws. This is the idea behind static members.

 You may hear static members referred to as class members; this is because all objects in
the class share them. By comparison, normal members are referred to as instance members,
or object members, because each object receives its own copy of these members.

Using static members
A static data member is one that has been declared with the static storage class, as shown here:

 class Student
{
 public:
 Student(char *pName = "no name") : name(pName)
 {
 noOfStudents++;
 }
 ~Student(){ noOfStudents--; }

 static int noOfStudents;
 string name;
};

Student s1;
Student s2;

The data member noOfStudents is part of the class Student but is not part of either s1 or s2. That
is, for every object of class Student, there is a separate name, but there is only one noOfStudents,
which all Students must share.

“Well then,” you ask, “if the space for noOfStudents is not allocated in any of the objects of class
Student, where is it allocated?” The answer is, “It isn’t.” You have to specifically allocate space
for it, as follows:

 int Student::noOfStudents = 0;

This somewhat peculiar-looking syntax allocates space for the static data member and initializes it
to 0. (You don't have to initialize a static member when you declare it; C++ will invoke the default
constructor if you don't.) Static data members must be global — a static variable cannot be local
to a function.

 The name of the class is required for any member when it appears outside its class
boundaries.

 This business of allocating space manually is somewhat confusing until you consider that
class definitions are designed to go into files that are included by multiple source code
modules. C++ has to know in which of those .cpp source files to allocate space for the
static variable. This is not a problem with non-static variables because space is allocated in
every object created.

Referencing static data members
The access rules for static members are the same as the access rules for normal members. From
within the class, static members are referenced like any other class member. Public static
members can be referenced from outside the class, whereas well-protected static members can’t.
Both types of reference are shown in the following code snippet using the declaration of Student
from the previous section:

 void fn(Student& s1, Student& s2)
{
 // reference public static
 cout << "No of students "
 << s1.noOfStudents // reference from outside
 << endl; // of the class
}

In fn(), noOfStudents is referenced using the object s1. But s1 and s2 share the same member
noOfStudents. How did I know to choose s1? Why didn’t I use s2 instead? It doesn’t make any
difference. You can reference a static member using any object of that class.

In fact, you don’t need an object at all. You can use the class name directly instead, if you prefer,
as in the following:

 // ...class defined the same as before...
void fn(Student& s1, Student& s2)
{
 // the following produce identical results
 cout << "Number of students "
 << Student::noOfStudents
 << endl;
}

If you do use an object name when accessing a static member, C++ uses only the declared class of
the object.

 This is a minor technicality, but in the interest of full disclosure: The object used to
reference a static member is not evaluated even if it’s an expression. For example, consider

the following case:

 class Student
{
 public:
 static int noOfStudents;
 Student& nextStudent();
 // ...other stuff the same...
};

void fn(Student& s)
{
 cout << s.nextStudent().noOfStudents << "\n"
}

The member function nextStudent() is not actually called. All C++ needs to access noOfStudents
is the return type, and it can get that without bothering to evaluate the expression. This is true even
if nextStudent() should do other things, such as wash windows or shine your shoes. None of those
things will be done. Although the example is obscure, it does happen. That’s what you get for
trying to cram too much stuff into one expression.

Uses for static data members
Static data members have umpteen uses, but let me touch on a few here. First, you can use static
members to keep count of the number of objects floating about. In the Student class, for example,
the count is initialized to 0, the constructor increments it, and the destructor decrements it. At any
given instant, the static member contains the count of the number of existing Student objects.
Remember, however, that this count reflects the number of Student objects (including any
temporaries) and not necessarily the number of students.

A closely related use for a static member is as a flag to indicate whether a particular action has
occurred. For example, a class Radio may need to initialize hardware before sending the first tune
command but not before subsequent tunes. A flag indicating that this is the first tune is just the
ticket. This includes flagging when an error has occurred.

Another common use is to provide space for the pointer to the first member of a list — the so-
called head pointer (see Chapter 13 if this doesn't sound familiar). Static members can allocate
bits of common data that all objects in all functions share (overuse of this common memory is a
really bad idea because doing so makes tracking errors difficult).

Declaring Static Member Functions
Member functions can be declared static as well. Static member functions are useful when you
want to associate an action to a class, but you don’t need to associate that action with a particular
object. For example, the member function Duck::fly() is associated with a particular duck,
whereas the rather more drastic member function Duck::goExtinct() is not.

Like static data members, static member functions are associated with a class and not with a
particular object of that class. This means that, like a reference to a static data member, a
reference to a static member function does not require an object. If an object is present, only its
type is used.

Thus, both calls to the static member function number() in the following example are legal. This
brings us to our first static program — I mean our first program using static members —
CallStaticMember:

 // CallStaticMember - demonstrate two ways to call a
// static member function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 Student(const char* pN = "no name") : sName(pN)
 {
 noOfStudents++;
 }
 ~Student() { noOfStudents--; }
 const string& name() { return sName; }
 static int number() { return noOfStudents; }

 protected:
 string sName;
 static int noOfStudents;
};
int Student::noOfStudents = 0;

int main(int argcs, char* pArgs[])
{
 // create two students and ask the class "how many?"
 Student s1("Chester");
 Student* pS2 = new Student("Scooter");

 cout << "Created " << s1.name()
 << " and " << pS2->name() << endl;
 cout << "Number of students is "
 << s1.number() << endl;

 // now get rid of a student and ask again
 cout << "Deleting " << pS2->name() << endl;
 delete pS2;
 cout << "Number of students is "
 << Student::number() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program creates two Student objects, one locally and one off the heap. It then displays their
names and the count of the number of students. Next the program deletes one of the students and
asks the class how many students are out there. The output from the program appears as follows:

 Created Chester and Scooter
Number of students is 2
Deleting Scooter
Number of students is 1
Press any key to continue...

This class keeps its data members protected and provides access functions that allow outside
(non-Student) code to read but not modify them.

 Declaring the return type of name() method to be string& rather than simply string causes
the function to return a reference to the object's existing name rather than create a temporary
string object. (See Chapter 17 for a brilliant treatise on constructing and avoiding
temporaries.) Adding the const to the declaration keeps the caller from modifying the class's
name member.

Notice how the static member function number() can access the static data member noOfStudents.
In fact, that's the only member of the class that it can access — a static member function is not
associated with any object. Were I to declare name() to be static, I could refer to Student::name(),
which would immediately beg the question, “Which name?”

The following snippet is only one case that I'm aware of where a static method can refer directly
to a non-static member:

 class Student
{
 public:

 static int elementsInName()
 {
 int sizeOfArray = sizeof(name);
 return sizeOfArray/sizeof(char);
 }

 protected:
 char name[MAX_NAME_SIZE];
};

 Here the static method elementsInName() refers to name without referencing any object.
This was not legal prior to the 2011 standard. It's allowed now because the sizeof name is the
same for all objects. Thus, it doesn't matter which object you refer to.

 You may wonder why I divided sizeof(name) by sizeof(char). The sizeof(name) returns
the number of bytes in the array name. But what we want is the number of elements in name,
so we have to divide by the size of each element in name. But isn't sizeof(char) equal to 1?
Well, maybe, but maybe not. Dividing the sizeof the array by the sizeof a single element
always works for all array types.

What Is this About Anyway?
How does a non-static object method know what object it's referring to? In other words, when I
ask the Student object for its name, how does name() know which sName to return?

The address of the current object is passed as an implied first argument to every non-static
method. When it is necessary to refer to this object, C++ gives it the name this. this is a keyword
in every object method meaning "the current object.” This is illustrated in the following code
snippet:

 class SC
{
 public:
 void dyn(int a); // like SC::dyn(SC *this, int a)
 static void stat(int a); // like SC::stat(int a)
};

void fn(SC& s)
{
 s.dyn(10); // -converts to-> SC::dyn(&s, 10);
 s.stat(10); // -converts to-> SC::stat(10);

}

That is, the function dyn() is interpreted almost as though it were declared void SC::dyn(SC *this,
int a). The call to dyn() is converted by the compiler as shown, with the address of s passed as the
first argument. (You can’t actually write the call this way, but this is what the compiler is doing.)

References to other non-static members within SC::dyn() automatically use the this argument as
the pointer to the current object. When SC::stat() was called, no object address was passed. Thus,
it has no this pointer to use when referencing non-static functions, which is why I say that a static
member function is not associated with any current object.

You can see this used explicitly in an object-oriented version of the linked list program from
Chapter 13; called LinkedLIstData. The entire program is available with the online material at
www.dummies.com/extras/cplusplus; the NameDataSet class appears here:

 // NameDataSet - stores a person's name (these objects
// could easily store any other information
// desired).
class NameDataSet
{
 public:
 NameDataSet(string& refName)
 : sName(refName), pNext(nullptr) {}

 // add self to beginning of list
 void add()
 {
 this->pNext = pHead;
 pHead = this;
 }

 // access methods
 static NameDataSet* first() { return pHead; }
 NameDataSet* next() { return pNext; }
 const string& name() { return sName; }
 protected:
 string sName;

 // the link to the first and next member of list
 static NameDataSet* pHead;
 NameDataSet* pNext;
};

// allocate space for the head pointer
NameDataSet* NameDataSet::pHead = nullptr;

http://www.dummies.com/extras/cplusplus

Here you can see that the pHead pointer to the beginning of the list has been converted into a static
data member because it applies to the entire class. In addition, pNext has been made a data
member and access methods have been provided to give other programs access to the now
protected members of the class.

The add() method adds the current object to the list by first setting its pNext pointer to the
beginning of the list. The next statement causes the head pointer to point to the current object via
the assignment pHead = this.

Part IV
Inheritance

 Visit www.dummies.com/extras/cplusplus for great Dummies content online.

http://www.dummies.com/extras/cplusplus

In this part…
Inheriting a base class
Exploring relationships
Factoring common properties
Declaring abstract classes
Visit www.dummies.com/extras/cplusplus for great Dummies content online

http://www.dummies.com/extras/cplusplus

Chapter 19
Inheriting a Class

In This Chapter
 Defining inheritance
 Inheriting a base class
 Constructing the base class
 Exploring meaningful relationships: The IS_A versus the HAS_A relationship

This chapter discusses inheritance, the ability of one class to inherit capabilities or properties
from another class.

Inheritance is a common concept. I am a human (except when I first wake up in the morning). I
inherit certain properties from the class Human, such as my ability to converse (more or less)
intelligently and my dependence on air, water, and carbohydrate-based nourishment (a little too
dependent on the latter, I’m afraid). These properties are not unique to humans. The class Human
inherits the dependencies on air, water, and nourishment from the class Mammal, which inherited
it from the class Animal.

The capability of passing down properties is a powerful one. It enables you to describe things in
an economical way. For example, if my son asks, “What’s a duck?” I can say, “It’s a bird that goes
quack.” Despite what you may think, that answer conveys a considerable amount of information.
He knows what a bird is, and now he knows all those same things about a duck plus the duck’s
additional property of “quackness.” (Refer to Chapter 11 for a further discussion of this and other
profound observations.)

Object-oriented (OO) languages express this inheritance relationship by allowing one class to
inherit from another. OO languages can generate a model that’s closer to the real world (remember
that real-world stuff!) than the model generated by languages that don’t support inheritance.

C++ allows one class to inherit another class as follows:

 class Student
{
};

class GraduateStudent : public Student
{
};

Here, a GraduateStudent inherits all the members of Student. Thus, a GraduateStudent IS_A
Student. (The capitalization of IS_A stresses the importance of this relationship.) Of course,

GraduateStudent may also contain other members that are unique to a GraduateStudent.

Do I Need My Inheritance?
Inheritance was introduced into C++ for several reasons. Of course, the major reason is the
capability of expressing the inheritance relationship. (I’ll return to that in a moment.) A minor
reason is to reduce the amount of typing. Suppose that you have a class Student, and you’re asked
to add a new class called GraduateStudent. Inheritance can drastically reduce the number of
things you have to put in the class. All you really need in the class GraduateStudent are things that
describe the differences between students and graduate students.

This IS_A-mazing
To make sense of our surroundings, humans build extensive taxonomies. Fido is a special case of dog, which is a
special case of canine, which is a special case of mammal, and so it goes. This shapes our understanding of the world.

To use another example, a student is a (special type of) person. Having said this, I already know a lot of things about
students (American students, anyway). I know they have social security numbers, they watch too much TV, and they
daydream about the opposite sex (the male ones, anyway). I know all these things because these are properties of all
people.

In C++, we say that the class Student inherits from the class Person. Also, we say that Person is a base class of
Student, and Student is a subclass of Person. One final phrase and then I'll stop: Student extends the class Person.
Finally, we say that a Student IS_A Person (using all caps is a common way of expressing this unique relationship — I
didn’t make it up). C++ shares this terminology with other object-oriented languages.

Notice that although Student IS_A Person, the reverse is not true. A Person IS not a Student. (A statement like this
always refers to the general case. It could be that a particular Person is, in fact, a Student.) A lot of people who are
members of class Person are not members of class Student. In addition, class Student has properties it does not share
with class Person. For example, Student has a grade point average, but Person does not.

The inheritance property is transitive. For example, if I define a new class GraduateStudent as a subclass of Student,
GraduateStudent must also be Person. It has to be that way: If a GraduateStudent IS_A Student and a Student IS_A
Person, a GraduateStudent IS_A Person.

Another minor side effect has to do with software modification. Suppose you inherit from some
existing class. Later, you find that the base class doesn't do exactly what the subclass needs. Or
perhaps the class has a bug. Modifying the base class might break other code that uses that base
class. Creating and using a new subclass that overloads the incorrect feature with a corrected
version solves your problem without causing someone else further problems.

How Does a Class Inherit?
Here’s the GraduateStudent example filled out into a program InheritanceExample:

 // InheritanceExample - demonstrate an inheritance
// relationship in which the subclass
// constructor passes argument information

// to the constructor in the base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;
class Advisor {}; // define an empty class

class Student
{
 public:
 Student(const char *pName = "no name")
 : name(pName), average(0.0), semesterHours(0)
 {
 cout << "Constructing student " << name << endl;
 }

 void addCourse(int hours, float grade)
 {
 cout << "Adding grade to " << name << endl;
 average = semesterHours * average + grade;
 semesterHours += hours;
 average = average / semesterHours;
 }

 int hours() { return semesterHours;}
 float gpa() { return average;}

 protected:
 string name;
 double average;
 int semesterHours;
};

class GraduateStudent : public Student
{
 public:
 GraduateStudent(const char *pName, Advisor adv,
 double qG = 0.0)
 : Student(pName), advisor(adv), qualifierGrade(qG)
 {
 cout << "Constructing graduate student "
 << pName << endl;

 }

 double qualifier() { return qualifierGrade; }

 protected:
 Advisor advisor;
 double qualifierGrade;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 // create a dummy advisor to give to GraduateStudent
 Advisor adv;

 // create two Student types
 Student llu("Cy N Sense");
 GraduateStudent gs("Matt Madox", adv, 1.5);

 // now add a grade to their grade point average
 llu.addCourse(3, 2.5);
 gs.addCourse(3, 3.0);

 // display the graduate student's qualifier grade
 cout << "Matt's qualifier grade = "
 << gs.qualifier() << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program demonstrates the creation and use of two objects, one of class Student and a second
of GraduateStudent. The output of this program is as follows:

 Constructing student Cy N Sense
Constructing student Matt Madox
Constructing graduate student Matt Madox
Adding grade to Cy N Sense
Adding grade to Matt Madox
Matt's qualifier grade = 1.5
Press Enter to continue...

Using a subclass
The class Student has been defined in the conventional fashion. The class GraduateStudent is a
bit different, however. The colon followed by the phrase public Student at the beginning of the
class definition declares GraduateStudent to be a subclass of Student.

 The appearance of the keyword public implies that there is probably protected inheritance
as well. All right, it’s true, but protected inheritance is rarely used and beyond the scope of
this book.

Programmers love inventing new terms or giving new meaning to existing terms. Heck,
programmers even invent new terms and then give them a second meaning. Here is a set of
equivalent expressions that describes the same relationship:

GraduateStudent is a subclass of Student.
Student is the base class or is the parent class of GraduateStudent.
GraduateStudent inherits or is derived from Student.
GraduateStudent extends Student.

As a subclass of Student, GraduateStudent inherits all its members. For example, a
GraduateStudent has a name even though that member is declared up in the base class. However,
a subclass can add its own members, for example qualifierGrade. After all, gs quite literally
IS_A Student plus a little bit more.

The main() function declares two objects, llu of type Student and gs of type GraduateStudent. It
then proceeds to access the addCourse() member function for both types of students. main() then
accesses the qualifier() function that is only a member of the subclass.

Constructing a subclass
Even though a subclass has access to the protected members of the base class and could initialize
them, each subclass is responsible for initializing itself.

Before control passes beyond the open brace of the constructor for GraduateStudent, control
passes to the proper constructor of Student. If Student were based on another class, such as
Person, the constructor for that class would be invoked before the Student constructor got control.
Like a skyscraper, the object is constructed starting at the “base”-ment class and working its way
up the class structure one story at a time.

Just as with member objects, you often need to be able to pass arguments to the base class
constructor. The example program declares the subclass constructor as follows:

 GraduateStudent(const char *pName, Advisor adv,
 double qG = 0.0)
 : Student(pName), advisor(adv), qualifierGrade(qG)
{

 // whatever else the constructor does
}

Here the constructor for GraduateStudent invokes the Student constructor, passing it the argument
pName. C++ then initializes the members advisor and qualifierGrade before executing the
statements within the constructor's open and close braces.

The default constructor for the base class is executed if the subclass makes no explicit reference to
a different constructor. Thus, in the following code snippet, the Pig base class is constructed
before any members of LittlePig, even though LittlePig makes no explicit reference to that
constructor:

 class House {};
class Pig
{
 public:
 Pig() : pHouse(nullptr) {}
 protected:
 House* pHouse;
};
class LittlePig : public Pig
{
 public:
 LittlePig(double volStraw, int numSticks,
 int numBricks)
 : straw(volStraw), sticks(numSticks),
 bricks(numBricks) { }

 protected:
 double straw;
 int sticks;
 int bricks;
};

Similarly, the copy constructor for a base class is invoked automatically.

Destructing a subclass
Following the rule that destructors are invoked in the reverse order of the constructors, the
destructor for GraduateStudent is given control first. After it’s given its last full measure of
devotion, control passes to the destructor for Advisor and then to the destructor for Student. If
Student were based on a class Person, the destructor for Person would get control after Student.

This is logical. The blob of memory is first converted to a Student object. Only then is it the job of
the GraduateStudent constructor to transform this simple Student into a GraduateStudent. The
destructor simply reverses the process.

Inheriting constructors

 As of the 2011 standard, subclass can inherit the constructor of its base class as well, as
shown in the following snippet:

 class Student
{
 public:
 Student(string name);
};
class GraduateStudent : public Student
{
 public:
 using Student::Student; // inherit base constructors
};

This creates a GraduateStudent(string) constructor exactly as if the following had been entered:

 class GraduateStudent : public Student
{
 public:
 GraduateStudent(string name) : Student(name) {}
};

The advantage of inheriting the constructors of the base class is that the subclass inherits all of the
base class constructors. This is useful when building a subclass that extends an important base
class in some trivial way.

Having a HAS_A Relationship
Notice that the class GraduateStudent includes the members of class Student and Advisor, but in a
different way. By defining a data member of class Advisor, you know that a Student has all the
data members of an Advisor within it. However, you can’t say that a GraduateStudent is an
Advisor — instead you say that a GraduateStudent HAS_A Advisor. What’s the difference
between this and inheritance?

Use a car as an example. You could logically define a car as being a subclass of vehicle, so it
inherits the properties of other vehicles. At the same time, a car has a motor. If you buy a car, you
can logically assume that you are buying a motor as well. (Unless you go to the used-car lot where
I got my last junk heap.)

If friends ask you to show up at a rally on Saturday with your vehicle of choice and you go in your
car, they can't complain (even if someone else shows up on a bicycle) because a car IS_A vehicle.
But, if you appear on foot carrying a motor, your friends will have reason to laugh at you because

a motor is not a vehicle. A motor is missing certain critical properties that all vehicles share —
such as a place to ride.

From a programming standpoint, the HAS_A relationship is just as straightforward. Consider the
following:

 class Vehicle {};
class Motor {};
class Car : public Vehicle
{
 public:
 Motor motor;
};

void VehicleFn(Vehicle& v);
void MotorFn(Motor& m);

int main(int nNumberofArgs, char* pszArgs[])
{
 Car car;
 VehicleFn(car); // this is allowed
 MotorFn(car); // this is not allowed
 MotorFn(car.motor);// this is allowed
 return 0;
}

The call VehicleFn(c) is allowed because car IS_A vehicle. The call MotorFn(car) is not
because car is not a Motor, even though it contains a Motor. If the intention were to pass the
Motor portion of c to the function, this must be expressed explicitly, as in the call
MotorFn(car.motor).

Chapter 20
Examining Virtual Member Functions: Are

They for Real?
In This Chapter

 Discovering how polymorphism (a.k.a. late binding) works
 Finding out how safe polymorphic nachos are
 Overriding member functions in a subclass
 Checking out special considerations with polymorphism

The number and type of a function’s arguments are included in its full, or extended, name. This
enables you to give two functions the same name as long as the extended name is different:

 void someFn(int);
void someFn(char*);
void someFn(char*, double);

In all three cases, the short name for these functions is someFn() (hey! this is some fun). The
extended names for all three differ: someFn(int) versus someFn(char*), and so on. C++ is left to
figure out which function is meant by the arguments during the call.

Member functions can be overloaded. The number of arguments, the type of arguments, and the
class name are all part of the extended name.

Inheritance introduces a whole new wrinkle, however. What if a function in a base class has the
same name as a function in the subclass? Consider, for example, the following simple code
snippet:

 class Student
{
 public:
 double calcTuition();
};

class GraduateStudent : public Student
{
 public:
 double calcTuition();
};

int main(int argcs, char* pArgs[])
{
 Student s;
 GraduateStudent gs;
 s.calcTuition(); //calls Student::calcTuition()
 gs.calcTuition();//calls GraduateStudent::calcTuition()
 return 0;
}

As with any overloading situation, when the programmer refers to calcTuition(), C++ has to
decide which calcTuition() is intended. Obviously, if the two functions differed in the type of
arguments, there’s no problem. Even if the arguments were the same, the class name should be
sufficient to resolve the call, and this example is no different. The call s.calcTuition() refers to
Student::calcTuition() because s is declared locally as a Student, whereas gs.calcTuition() refers
to GraduateStudent::calcTuition().

But what if the exact class of the object can’t be determined at compile-time? To demonstrate how
this can occur, change the preceding program in a seemingly trivial way:

 // OverloadOverride - demonstrate when a function is
// overloaded at compile time vs. overriden at runtime
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Student
{
 public:
 // uncomment one or the other of the next
 // two lines; one binds calcTuition() early and
 // the other late
// void calcTuition()
 virtual void calcTuition()
 {
 cout << "We're in Student::calcTuition" << endl;
 }
};

class GraduateStudent : public Student
{
 public:
 void calcTuition()
 {

 cout<<"We're in GraduateStudent::calcTuition"<<endl;
 }
};

void fn(Student& x)
{
 x.calcTuition(); // which calcTuition()?
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // pass a base class object to function
 // (to match the declaration)
 Student s;
 fn(s);

 // pass a specialization of the base class instead
 GraduateStudent gs;
 fn(gs);

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Instead of calling calcTuition() directly, the call is now made through an intermediate function,
fn(). Depending on how fn() is called, x can be a Student or a GraduateStudent. A
GraduateStudent IS_A Student.

 Refer to Chapter 19 if you don't remember why a GraduateStudent IS_A Student.

The argument x passed to fn() is declared to be a reference to Student.

 Passing an object by reference can be a lot more efficient than passing it by value. See
Chapter 17 for a treatise on making copies of objects.

You might want x.calcTuition() to call Student::calcTuition() when x is a Student but to call
GraduateStudent::calcTuition() when x is a GraduateStudent. It would be really cool if C++
were that smart.

 The type that you’ve been accustomed to until now is called the static, or compile-time,
type. The compile-time type of x is Student in both cases because that’s what the declaration
in fn() says. The other kind is the dynamic, or runtime, type. In the case of the example
function fn(), the run-time type of x is Student when fn() is called with s and
GraduateStudent when fn() is called with gs. Aren’t we having fun?

The capability of deciding at runtime which of several overloaded member functions to call based
on the run-time type is called polymorphism, or late binding. Deciding which overloaded function
to call at compile-time is called early binding because that sounds like the opposite of late
binding.

Overloading a base class function polymorphically is called overriding the base class function.
This new name is used to differentiate this more complicated case from the normal overload case.

Why You Need Polymorphism
Polymorphism is key to the power of object-oriented programming. It’s so important that
languages that don’t support polymorphism can’t advertise themselves as OO languages. (I think
it’s a government regulation — you can’t label a language OO if it doesn’t support polymorphism
unless you add a disclaimer from the Surgeon General, or something like that.)

Without polymorphism, inheritance has little meaning. Remember how I made nachos in the oven?
In this sense, I was acting as the late binder. The recipe read: Heat the nachos in the oven. It didn’t
read: If the type of oven is microwave, do this; if the type of oven is conventional, do that; if the
type of oven is convection, do this other thing. The recipe (the code) relied on me (the late binder)
to decide what the action (member function) heat means when applied to the oven (the particular
instance of class Oven) or any of its variations (subclasses), such as a microwave oven
(Microwave). This is the way people think, and designing a language along the lines of the way
people think allows the programming model to more accurately describe the world in which
people live.

How Polymorphism Works
Any given language can support either early or late binding based upon the whims of its
developers. Older languages like C tend to support early binding alone. Recent languages like
Java and C# support only late binding. As a fence straddler, C++ supports both early and late
binding.

You may be surprised that the default for C++ is early binding. The output of the
OverloadOverride program the way it appears is as follows:

 We're in Student::calcTuition
We're in Student::calcTuition
Press Enter to continue...

The reason is simple, if a little dated. First, C++ has to act as much like C as possible by default
to retain upward compatibility with its predecessor. Second, polymorphism adds a small amount
of overhead to every function call both in terms of data storage and code needed to perform the
call. The founders of C++ were concerned that any additional overhead would be used as a reason
not to adopt C++ as the system’s language of choice, so they made the more efficient early binding
the default.

To make a member function polymorphic, the programmer must flag the function with the C++
keyword virtual, as shown in the following modification to the declaration in the
OverloadOveride program:

 class Student
{
 public:
 virtual void calcTuition()
 {
 cout << "We're in Student::calcTuition" << endl;
 }
};

The keyword virtual that tells C++ that calcTuition() is a polymorphic member function. That is to
say, declaring calcTuition() virtual means that calls to it will be bound late if there is any doubt as
to the run-time type of the object with which calcTuition() is called.

Executing the OverloadOveride program with calcTuition() declared virtual generates the
following output:

 We're in Student::calcTuition
We're in GraduateStudent::calcTuition
Press Enter to continue...

 If you’re comfortable with the debugger that comes with your C++ environment, you really
should single-step through this example. It's so cool to see the program single-step into
Student::calcTuition() the first time that fn() is called but into
GraduateStudent::calcTuition() on the second call. I don't think that you can truly appreciate
polymorphism until you've tried it.

 You need to declare the function virtual only in the base class. The “virtualness” is carried
down to the subclass automatically. In this book, however, I follow the coding standard of
declaring the function virtual everywhere (virtually).

When Is a Virtual Function Not?

Just because you think that a particular function call is bound late doesn’t mean that it is. If not
declared with the same arguments in the subclasses, the member functions are not overridden
polymorphically, whether or not they are declared virtual.

One exception to the identical declaration rule is that if the member function in the base class
returns a pointer or reference to a base class object, an overridden member function in a subclass
may return a pointer or reference to an object of the subclass. In other words, the function
makeACopy() is polymorphic, even though the return type of the two functions differ:

 class Base
{
 public:
 // return a copy of the current object
 Base* makeACopy();
};

class SubClass : public Base
{
 public:
 // return a copy of the current object
 SubClass* makeACopy();
};

void fn(Base& bc)
{
 Base* pCopy = bc.makeACopy();

 // proceed on...
}

In practice, this is quite natural. A makeACopy() function should return an object of type SubClass,
even though it might override BaseClass::makeACopy().

 This business of silently deciding when a function is overridden and when not is a source
of error in C++; so much so that the 2011 standard introduced the descriptor override that the
programmer can use to indicate her intent to override a base class function. C++ generates a
compiler error if a function is declared override but does not, in fact, override a base class
function for some reason (such as a mismatched argument) as in the following example:

 class Student
{
 public:
 virtual void addCourseGrade(double grade);
};

class GradStudent : public Student
{
 public:
 virtual void addCourseGrade(float grade) override;
};

This snippet generates a compile-time error because the method
GradStudent::addCourseGrade(float) was declared override but it does not, in fact, override the
base class function Student::addCourseGrade(double) because the argument types don't match.

 The programmer can also declare a function as not overrideable using the final keyword,
even if that function itself overrides some earlier base class function, as demonstrated in the
following additional PostDoc class:

 class GradStudent : public Student
{
 public:
 virtual void addCourseGrade(double grade) final;
};
class PostDoc : public GradStudent
{
 public:
 virtual void addCourseGrade(double grade);
};

Since Student::addCourseGrade() is marked final, the declaration of
PostDoc::addCourseGrade() generates an error because it attempts to override the Student
method.

 In addition, an entire class can be declared final:

 class GradStudent final: public Student

This affects more than just the virtual methods of the class. A final class cannot be inherited from
at all.

Considering Virtual Considerations
You need to keep in mind a few things when using virtual functions. First, static member functions
cannot be declared virtual. Because static member functions are not called with an object, there is
no runtime object upon which to base a binding decision.

Second, specifying the class name in the call forces a call to bind early, whether or not the

function is virtual. For example, the following call is to Base::fn() because that’s what the
programmer indicated, even if fn() is declared virtual:

 void test(Base& b)
{
 b.Base::fn(); // this call is not bound late
}

Finally, constructors cannot be virtual because there is no (completed) object to use to determine
the type. At the time the constructor is called, the memory that the object occupies is just an
amorphous mass. It’s only after the constructor has finished that the object is a member of the class
in good standing.

By comparison, the destructor should almost always be declared virtual. If not, you run the risk of
improperly destructing the object, as in the following circumstance:

 class Base
{
 public:
 ~Base();
};

class SubClass : public Base
{
 public:
 ~SubClass();
};

void finishWithObject(Base* pHeapObject)
{
 // ...work with object...
 // now return it to the heap
 delete pHeapObject; // this calls ~Base() no matter
} // the runtime type of
 // pHeapObject

If the pointer passed to finishWithObject() really points to a SubClass, the SubClass destructor is
not invoked properly — because the destructor has not been declared virtual, it’s always bound
early. Declaring the destructor virtual solves the problem.

So when would you not want to declare the destructor virtual? There’s only one case. Virtual
functions introduce a “little” overhead. Let me be more specific: When the programmer defines the
first virtual function in a class, C++ adds an additional, hidden pointer — not one pointer per
virtual function, just one pointer if the class has any virtual functions. A class that has no virtual
functions (and does not inherit any virtual functions from base classes) does not have this pointer.

Now, one pointer doesn’t sound like much, and it isn’t unless the following two conditions are

true:

The class doesn’t have many data members (so that one pointer represents a lot compared to
what’s there already).
You intend to create a lot of objects of this class (otherwise, the overhead doesn’t make any
difference).

If these two conditions are met and your class doesn’t already have virtual member functions, you
may not want to declare the destructor virtual.

 Except for this one case, always declare destructors to be virtual, even if a class is not
subclassed (yet) — you never know when someone will come along and use your class as the
base class for her own. If you don’t declare the destructor virtual, then declare the class final
(if your compiler supports this feature) and document it!

Chapter 21
Factoring Classes

In This Chapter
 Factoring common properties into a base class
 Using abstract classes to hold factored information
 Declaring abstract classes
 Inheriting from an abstract class
 Dividing a program into multiple modules using a project file

The concept of inheritance allows one class to inherit the properties of a base class. Inheritance
has a number of purposes, including paying for my son’s college. The main benefit of inheritance
is the ability to point out the relationship between classes. This is the so-called IS_A relationship
— a MicrowaveOven IS_A Oven and stuff like that.

Factoring is great stuff if you make the correct correlations. For example, the microwave versus
conventional oven relationship seems natural. Claim that microwave is a special kind of toaster,
and you’re headed for trouble. True, they both make things hot, they both use electricity, and
they’re both found in the kitchen, but the similarity ends there — a microwave can’t make toast and
a toaster can't make nachos.

Identifying the classes inherent in a problem and drawing the correct relationships among these
classes is a process known as factoring. (The word is related to the arithmetic that you were
forced to do in grade school: factoring out the least common denominators, for example, 12 is
equal to 2 times 2 times 3.)

Factoring
This section describes how you can use inheritance to simplify your programs using a bank
account example. Suppose that you were asked to write a simple bank program that implemented
the concept of a savings account and a checking account.

I can talk until I’m blue in the face about these classes; however, object-oriented programmers
have come up with a concise way to describe the salient points of a class in a drawing. The
Checking and Savings classes are shown in Figure 21-1. (This is only one of several ways to
graphically express the same thing.)

Figure 21-1: Independent classes Checking and Savings.

To read this figure and the other figures, remember the following:

The big box is the class, with the class name at the top.
The names in boxes are member functions.
The names not in boxes are data members.
The names that extend partway out of the boxes are publicly accessible members; that is, these
members can be accessed by functions that are not part of the class or any of its descendents.
Those members that are completely within the box are not accessible from outside the class.
A thick arrow (see Figure 21-2) represents the IS_A relationship.
A thin arrow represents the HAS_A relationship.

 A Car IS_A Vehicle, but a Car HAS_A Motor.

You can see in Figure 21-1 that the Checking and Savings classes have a lot in common. For
example, both classes have a withdrawal() and deposit() member function. Because the two
classes aren’t identical, however, they must remain as separate classes. (In a real-life bank
application, the two classes would be a good deal more different than in this example.) Still, there
should be a way to avoid this repetition.

You could have one of these classes inherit from the other. Savings has more members than
Checking, so you could let Savings inherit from Checking. This arrangement is shown in Figure
21-2. The Savings class inherits all the members. The class is completed with the addition of the
data member noWithdrawals and by overriding the function withdrawal(). You have to override
withdrawal() because the rules for withdrawing money from a savings account are different from
those for withdrawing money from a checking account.

Figure 21-2: Savings implemented as a subclass of Checking.

Although letting Savings inherit from Checking is laborsaving, it’s not completely satisfying. The
main problem is that, like the weight listed on my driver’s license, it misrepresents the truth. This
inheritance relationship implies that a savings account is a special type of checking account, which
it is not.

“So what?” you say. “Inheriting works, and it saves effort.” True, but my reservations are more
than stylistic trivialities — my reservations are at some of the best restaurants in town (at least
that’s what all the truckers say). Such misrepresentations are confusing to the programmer, both
today’s and tomorrow’s. Someday, a programmer unfamiliar with our programming tricks will
have to read and understand what our code does. Misleading representations are difficult to
reconcile and understand.

In addition, such misrepresentations can lead to problems down the road. Suppose, for example,
that the bank changes its policies with respect to checking accounts. Say it decides to charge a
service fee on checking accounts only if the minimum balance dips below a given value during the
month.

A change like this can be easily handled with minimal changes to the class Checking. You’ll have
to add a new data member to the class Checking to keep track of the minimum balance during the
month. Let’s go out on a limb and call it minimumBalance.

But now you have a problem. Because Savings inherits from Checking, Savings gets this new data
member as well. It has no use for this member because the minimum balance does not affect
savings accounts, so it just sits there. Remember that every checking account object has this extra
minimumBalance member. One extra data member may not be a big deal, but it adds further
confusion.

Changes like this accumulate. Today it’s an extra data member — tomorrow it’s a changed
member function. Eventually, the savings account class is carrying a lot of extra baggage that is
applicable only to checking accounts.

Now the bank comes back and decides to change some savings account policy. This requires you
to modify some function in Checking. Changes like this in the base class automatically propagate

down to the subclass unless the function is already overridden in the subclass Savings. For
example, suppose that the bank decides to give away toasters for every deposit into the checking
account. (Hey — it could happen!) Without the bank (or its programmers) knowing it, deposits to
checking accounts would automatically result in toaster donations. Unless you’re very careful,
changes to Checking may unexpectedly appear in Savings.

How can you avoid these problems? Claiming that Checking is a special case of Savings changes
but doesn’t solve our problem. What you need is a third class (call it Account, just for grins) that
embodies the things that are common between Checking and Savings, as shown in Figure 21-3.

Figure 21-3: Basing Checking and Savings on a common Account class.

How does building a new account solve the problems? First, creating a new Account class is a
more accurate description of the real world (whatever that is). In our concept of things (or at least
in mine), there really is something known as an account. Savings accounts and checking accounts
are special cases of this more fundamental concept.

In addition, the class Savings is insulated from changes to the class Checking (and vice versa). If
the bank institutes a fundamental change to all accounts, you can modify Account, and all
subclasses will automatically inherit the change. But if the bank changes its policy only for
checking accounts, you can modify just the Checking account class without affecting Savings.

This process of culling common properties from similar classes is the essence of class factoring.

 Factoring is legitimate only if the inheritance relationship corresponds to reality.
Factoring together a class Mouse and Joystick because they’re both hardware pointing
devices is legitimate. Factoring together a class Mouse and Display because they both make
low-level operating system calls is not.

Implementing Abstract Classes
As intellectually satisfying as factoring is, it introduces a problem of its own. Return one more

time to the bank account classes, specifically the common base class Account. Think for a minute
about how you might go about defining the different member functions defined in Account.

Most Account member functions are no problem because both account types implement them in the
same way. Implementing those common functions with Account::withdrawal() is different,
however. The rules for withdrawing from a savings account are different than those for
withdrawing from a checking account. You’ll have to implement Savings::withdrawal()
differently than you do Checking::withdrawal(). But how are you supposed to implement
Account::withdrawal()?

Let’s ask the bank manager for help. I imagine the conversation going something like the
following:

“What are the rules for making a withdrawal from an account?” you ask.

“What type of account? Savings or checking?” comes the reply.

“From an account,” you say. “Just an account.”

Blank look. (One might say a “blank bank look” … then again, maybe not.)

The problem is that the question doesn’t make sense. There’s no such thing as “just an account.”
All accounts (in this example) are either checking accounts or savings accounts. The concept of an
account is an abstract one that factors out properties common to the two concrete classes. It is
incomplete because it lacks the critical property withdrawal(). (After you get further into the
details, you may find other properties that a simple account lacks.)

An abstract class is one that exists only in subclasses. A concrete class is a class that is not
abstract.

Describing the abstract class concept
An abstract class is a class with one or more pure virtual functions. Oh, great! That helps a lot.

Okay, a pure virtual function is a virtual member function that is marked as having no
implementation. Most likely it has no implementation because no implementation is possible with
the information provided in the class, including any base classes. A conventional, run-of-the-mill
non-pure virtual function is known as a concrete function (note that a concrete function may be
virtual — unfortunately, C++ uses this term to mean polymorphic. See Chapter 20).

The syntax for declaring a function pure virtual is demonstrated in the following class Account:

 // Account - this class is an abstract class
class Account
{
 public:
 Account(unsigned accNo, double initialBalance = 0.0);

 // access functions
 unsigned int accountNo();
 double acntBalance();

 static int noAccounts();

 // transaction functions
 void deposit(double amount);

 // the following is a pure virtual function
 virtual void withdrawal(double amount) = 0;

 protected:
 // keep accounts in a linked list so there's no limit
 // to the number of accounts
 static int count; // number of accounts
 unsigned accountNumber;
 double balance;
};

The = 0 after the declaration of withdrawal() indicates that the programmer does not intend to
define this function. The declaration is a placeholder for the subclasses. The subclasses of
Account are expected to override this function with a concrete function. The programmer must
provide an implementation for each member function not declared pure virtual.

 I think this notation is silly, and I don’t like it any more than you do. But it’s here to stay,
so you just have to learn to live with it. There is a reason, if not exactly a justification, for
this notation. Every virtual function must have an entry in a special table. This entry contains
the address of the function. Presumably, at least at one time, the entry for a pure virtual
function was 0. In any case, it's the syntax we're stuck with now.

An abstract class cannot be instanced with an object; that is, you can’t make an object out of an
abstract class. For example, the following declaration is not legal:

 void fn()
{
 // declare an account with 100 dollars
 Account acnt(1234, 100.00);// this is not legal
 acnt.withdrawal(50); // what would you expect
} // this call to do?

If the declaration were allowed, the resulting object would be incomplete, lacking in some
capability. For example, what should the preceding call do? Remember, there is no
Account::withdrawal().

Abstract classes serve as base classes for other classes. An Account contains all the properties
associated with a generic bank account. You can create other types of bank accounts by inheriting
from Account.

 The technical term is to instantiate. We say that the Account class cannot be instantiated
with an object or a given object instantiates the Savings class.

Making an honest class out of an abstract class
The subclass of an abstract class remains abstract until all pure virtual functions have been
overridden. The class Savings is not abstract because it overrides the pure virtual function
withdrawal() with a perfectly good definition. The class Savings knows how to perform
withdrawal() when called on to do so. So does the class Checking, even if the answer is different.
Neither class is virtual because the function withdrawal() overrides the pure virtual function in the
base class.

Passing abstract classes
Because you can’t instantiate an abstract class, it may sound odd that it’s possible to declare a
pointer or a reference to an abstract class. With polymorphism, however, this isn’t as crazy as it
sounds. Consider the following code snippet:

 void fn(Account *pAccount); // this is legal
void otherFn()
{
 Savings s; Checking c;

 // this is legitimate because Savings IS_A Account
 fn(&s);
 // same here
 fn(&c);
}

Here, pAccount is declared as a pointer to an Account. However, it’s understood that when the
function is called, it will be passed the address of some non-abstract subclass object such as
Savings or Checking.

All objects received by fn() will be of either class Savings or class Checking (or some future
equally non-abstract subclass of Account). The function is assured that you will never pass an
actual object of class Account because you could never create one to pass in the first place.

The online material at www.dummies.com/extras/cplusplus includes a set of programs
Budget1 through Budget5. Each program solves essentially the same problem. Each program
allows the user to create and collect the balance of a series of checking and savings accounts.
However, each program in the sequence is a bit more object-oriented than its predecessors.
Budget1 is a completely functional implementation with no concept of classes. Budget2
implements separate Savings and Checking classes. The Budget3 program factors the similarities
in these two classes into a common, abstract Account class using the techniques presented in this
chapter. Budget4 and Budget5 go on to use features presented in the following chapters.

http://www.dummies.com/extras/cplusplus

Part V
Security

 Visit www.dummies.com/extras/cplusplus for great Dummies content online.

http://www.dummies.com/extras/cplusplus

In this part…
Introducing the assignment operator
Performing input/output
Handling program errors
Introducing multiple inheritance
Applying templates
Evading hackers
Visit www.dummies.com/extras/cplusplus for great Dummies content online

http://www.dummies.com/extras/cplusplus

Chapter 22
A New Assignment Operator, Should You

Decide to Accept It
In This Chapter

 Introducing the assignment operator
 Knowing why and when the assignment operator is necessary
 Understanding similarities between the assignment operator and the copy constructor
 Comparing copy semantics with move semantics

The intrinsic data types are built into the language, such as int, float, and double and the various
pointer types. Chapters 3 and 4 describe the operators that C++ defines for the intrinsic data types.
C++ enables the programmer to define the operators for classes that the programmer has created in
addition to these intrinsic operators. This is called operator overloading.

Normally, operator overloading is optional and not attempted by beginning C++ programmers. A
lot of experienced C++ programmers (including me) don’t think operator overloading is such a
great idea either. However, you will have to learn how to overload one operator: the assignment
operator.

Comparing Operators with Functions
An operator is nothing more than a built-in function with a peculiar syntax. The following addition
operation

 a + b

could be understood as though it were written

 operator+(a, b)

In fact, C++ gives each operator a function-style name. The functional name of an operator is the
operator symbol preceded by the keyword operator and followed by the appropriate argument
types. For example, the + operator that adds an int to an int generating an int is called int
operator+(int, int).

Any existing operator can be defined for a user-defined class. Thus, I could create a Complex
operator*(const Complex&, const Complex&) that would allow me to multiply two objects of
type Complex. The new operator may have the same semantics as the operator it overloads, but it
doesn't have to. The following rules apply when overloading operators:

The programmer cannot overload the . (dot), :: (colon), .*, *->, sizeof and ?: (ternary)
operators.
The programmer cannot invent a new operator. For example, you cannot invent the operation x
$ y.
The syntax of an operator cannot be changed. Thus, you cannot define an operation %i because
% is already defined as a binary operator.
The operator precedence cannot change. A program cannot force operator+ to be evaluated
before operator*.
The operators cannot be redefined when applied to intrinsic types — you can't change the
meaning of 1 + 2. Existing operators can be overloaded only for newly defined types.

Overloading operators is one of those things that seems like a much better idea than it really is. In
my experience, operator overloading introduces more problems than it solves, with three notable
exceptions that are the subject of this chapter.

Inserting a New Operator
The insertion and extraction operators << and >> are nothing more than the left and right shift
operators overloaded for a set of input/output classes. These definitions are found in the include
file iostream (which is why every program includes that file). Thus, cout << “some string”
becomes operator<<(cout, “some string”). Our old friends cout and cin are predefined objects
that are tied to the console and keyboard, respectively. I discuss this in detail in Chapter 23.

Creating Shallow Copies Is a Deep Problem
No matter what anyone may think of operator overloading, you’ll need to overload the assignment
operator for many classes that you generate. C++ provides a default definition for operator=() for
all classes. This default definition performs a member-by-member copy. This works great for an
intrinsic type like an int where the only “member” is the integer itself.

 int i;
i = 10; // "member by member" copy

This same default definition is applied to user-defined classes. In the following example, each
member of source is copied over the corresponding member in destination:

 void fn()
{
 MyStruct source, destination;
 destination = source;
}

The default assignment operator works for most classes; however, it is not correct for classes that

allocate resources, such as heap memory. The programmer must overload operator=() to handle
the transfer of resources.

The assignment operator is much like the copy constructor (see Chapter 17). In use, the two look
almost identical:

 void fn(MyClass& mc)
{
 MyClass newMC(mc); //of course, this uses the
 //copy constructor
 MyClass newerMC = mc;//less obvious, this also invokes
 //the copy constructor
 MyClass newestMC; //this creates a default object
 newestMC = mc; //and then overwrites it with
 //the argument passed
}

The creation of newMC follows the standard pattern of creating a new object as a mirror image of
the original using the copy constructor MyClass(const MyClass&). Not so obvious is that
newerMC is also created using the copy constructor. MyClass a = b is just another way of writing
MyClass a(b) — in particular, this declaration does not involve the assignment operator despite
its appearance. However, newestMC is created using the default constructor and then overwritten
with mc using the assignment operator.

 The rule is this: The copy constructor is used when a new object is being created. The
assignment operator is used if the left-hand object already exists.

Like the copy constructor, an assignment operator should be provided whenever a shallow copy is
not appropriate. (Chapter 17 discusses shallow versus deep copy constructors.) A simple rule is
to provide an assignment operator for classes that have a user-defined copy constructor.

Notice that the default copy constructor does work for classes that contain members that
themselves have copy constructors, like in the following example:

 class Student
{
 public:
 int nStudentID;
 string sName;
};

The C++ library class string does allocate memory off the heap, so the authors of that class
include a copy constructor and an assignment operator that (one hopes) perform all the operations
necessary to create a successful copy of a string. The default copy constructor for Student invokes
the string copy constructor to copy sName from one student to the next. Similarly, the default

assignment operator for Student does the same.

Overloading the Assignment Operator
The DemoAssignmentOperator program demonstrates how to provide an assignment operator.
The program also includes a copy constructor to provide a comparison:

 //DemoAssignmentOperator - demonstrate the assignment
// operator on a user defined class
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// DArray - a dynamically sized array class used to
// demonstrate the assignment and copy constructor
// operators
class DArray
{
 public:
 DArray(int nLengthOfArray = 0)
 : nLength(nLengthOfArray), pArray(nullptr)
 {
 cout << "Creating DArray of length = "
 << nLength << endl;
 if (nLength > 0)
 {
 pArray = new int[nLength];
 }
 }
 DArray(DArray& da)
 {
 cout << "Copying DArray of length = "
 << da.nLength << endl;
 copyDArray(da);
 }
 ~DArray()
 {
 deleteDArray();
 }

 //assignment operator
 DArray& operator=(const DArray& s)

 {
 cout << "Assigning source of length = "
 << s.nLength
 << " to target of length = "
 << this->nLength << endl;

 //delete existing stuff...
 deleteDArray();
 //...before replacing with new stuff
 copyDArray(s);
 //return reference to existing object
 return *this;
 }

 int& operator[](int index)
 {
 return pArray[index];
 }

 int size() { return nLength; }

 void display(ostream& out)
 {
 if (nLength > 0)
 {
 out << pArray[0];
 for(int i = 1; i < nLength; i++)
 {
 out << ", " << pArray[i];
 }
 }
 }

 protected:
 void copyDArray(const DArray& da);
 void deleteDArray();

 int nLength;
 int* pArray;
};

//copyDArray() - create a copy of a dynamic array of ints
void DArray::copyDArray(const DArray& source)

{
 nLength = source.nLength;
 pArray = nullptr;
 if (nLength > 0)
 {
 pArray = new int[nLength];
 for(int i = 0; i < nLength; i++)
 {
 pArray[i] = source.pArray[i];
 }
 }
}

//deleteDArray() - return heap memory
void DArray::deleteDArray()
{
 nLength = 0;
 delete pArray;
 pArray = nullptr;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // a dynamic array and assign it values
 DArray da1(5);
 for (int i = 0; i < da1.size(); i++)
 {
 // uses user defined index operator to access
 // members of the array
 da1[i] = i;
 }
 cout << "da1="; da1.display(cout); cout << endl;

 // now create a copy of this dynamic array using
 // copy constructor; this is same as da2(da1)
 DArray da2 = da1;
 da2[2] = 20; // change a value in the copy
 cout << "da2="; da2.display(cout); cout << endl;

 // overwrite the existing da2 with the original da1
 da2 = da1;
 cout << "da2="; da2.display(cout); cout << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The class DArray defines an integer array of variable length: You tell the class how big an array
to create when you construct the object. It does this by wrapping the class around two data
members: nLength, which contains the length of the array, and pArray, a pointer to an
appropriately sized block of memory allocated off the heap.

The default constructor initializes nLength to the indicated length and then pArray to nullptr.

 The nullptr keyword is new to the '11 standard. If your compiler doesn't recognize nullptr,
you can add the following definition near the top of your program:

 #define nullptr 0

If the length of the array is actually greater than 0, the constructor allocates an array of int's of the
appropriate size off the heap.

The copy constructor creates an array of the same size as the source object and then copies the
contents of the source array into the current array using the protected method copyDArray(). The
destructor returns the memory allocated in the constructor to the heap using the deleteDArray()
method. This method nulls out the pointer pArray once the memory has been deleted.

The assignment operator=() is a method of the class. It looks to all the world like a destructor
immediately followed by a copy constructor. This is typical. Consider the assignment in the
example da2 = da1. The object da2 already has data associated with it. In the assignment, the
original dynamic array must be returned to the heap by calling deleteDArray(), just like the
DArray destructor. The assignment operator then invokes copyDArray() to copy the new
information into the object, much like the copy constructor.

There are two more details about the assignment operator. First, the return type of operator=() is
DArray&, and the returned value is always *this. Expressions involving the assignment operator
have a value and a type, both of which are taken from the final value of the left-hand argument. In
the following example, the value of operator=() is 2.0, and the type is double.

 double d1, d2;
void fn(double);
d1 = 2.0; // the type of this expression is double
 // and the value is 2.0

This is what enables the programmer to write the following:

 d2 = d1 = 2.0
fn(d2 = 3.0); // performs the assignment and passes the
 // resulting value to fn()

The value of the assignment d1 = 2.0 (2.0) and the type (double) are passed to the assignment to
d2. In the second example, the value of the assignment d2 = 3.0 is passed to the function fn(), but
the type of operator=() is matched to the declarations to find fn(double).

A user-created assignment operator should support the same semantics as the intrinsic version:

 fn(DArray&); // given this declaration...
fn(da2 = da1); // ...this should be legal

The second detail is that operator=() was written as a member function. The left-hand argument is
taken to be the current object (this). Unlike other operators, the assignment operator cannot be
overloaded with a non-member function.

 You can delete the default copy constructor and assignment operator if you don't want to
define your own:

 class NonCopyable
{
 public:
 NonCopyable(const NonCopyable&) = delete;
 NonCopyable& operator=(const NonCopyable&) = delete;
};

An object of class NonCopyable cannot be copied via either construction or assignment:

 void fn(NonCopyable& src)
{
 NonCopyable copy(src); // not allowed
 copy = src; // nor is this
}

If your compiler does not support the '11 extensions, you can declare the assignment operator
protected:

 class NonCopyable
{
 protected:
 NonCopyable(const NonCopyable&) {};
 NonCopyable& operator=(const NonCopyable&)
 {return *this};

};

 If your class allocates resources such as memory off the heap, you must make the default
assignment operator and copy constructors inaccessible, ideally by replacing them with your
own version.

Overloading the Subscript Operator
The earlier DemoAssignmentOperator example program actually slipped in a third operator that
is often overloaded for container classes: the subscript operator.

The following definition allows an object of class DArray to be manipulated like an intrinsic
array:

 int& operator[](int index)
{
 return pArray[index];
}

This makes an assignment like the following legal:

 int n = da[0]; // becomes n = da.operator[](0);

Notice, however, that rather than return an integer value, the subscript operator returns a reference
to the value within pArray. This allows the calling function to modify the value as demonstrated
within the DemoAssignmnentOperator program:

 da2[2] = 20;

You can see further examples of overloading the index operator for container classes in Chapter
27.

The Move Constructor and Move Operator

 This entire subject is new to C++ '11.

Copy constructors and copy assignment operators are neat for retaining simple semantics for
classes that you create. However, since their inception, C++ programmers have not been happy
with the inefficiencies that they can create. Consider the following example:

 MyContainer fn(int size)
{
 MyContainer localMC(size);
 return mc;

}

MyContainer mc(fn());

In this case, the function fn() creates a local MyContainer object localMC and then returns it to
the caller by value. This simple call could result in the same MyContainer object being copied not
once but twice:

1. As part of the return, C++ must make a temporary copy of the localMC object onto the return
stack to return to the caller.

2. The subsequent call to the copy constructor copies the contents of this temporary object into
the local mc object.

The second copy is unnecessary. Since the temporary object is about to be destructed anyway, the
copy constructor could just "take" the assets away from the temporary object rather than go through
the hassle of making a copy of something that's about to be put back on the heap anyway. This is
the essence of the move constructor.

The move constructor looks like a copy constructor except for two things:

A move constructor takes the resources from the source and gives them to the target rather than
copying.
The argument of the move constructor is of type MyContainer&&, the double ampersand
meaning “only use for temporary values.”

The following example program shows both the move constructor and move assignment operator
in action:

 // DemoMoveOperator - demonstrate the move operator
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>

using namespace std;
class MyContainer
{
 public:
 MyContainer(int nS, const char* pS) : nSize(nS)
 {
 pString = new char[nSize];
 strcpy(pString, pS);
 }
 ~MyContainer()
 {

 delete pString;
 pString = nullptr;
 }

 //copy constructor
 MyContainer(const MyContainer& s)
 {
 copyIt(*this, s);
 }
 MyContainer& operator=(MyContainer& s)
 {
 delete pString;
 copyIt(*this, s);
 return *this;
 }

 // move constructor
 MyContainer(MyContainer&& s)
 {
 moveIt(*this, s);
 }
 MyContainer& operator=(MyContainer&& s)
 {
 delete pString;
 moveIt(*this, s);
 return *this;
 }

 protected:
 static void moveIt(MyContainer& tgt, MyContainer& src)
 {
 cout << "Moving " << src.pString << endl;
 tgt.nSize = src.nSize;
 tgt.pString = src.pString;
 src.nSize = 0;
 src.pString = nullptr;
 }
 static void copyIt(MyContainer& tgt,
 const MyContainer& src)
 {
 cout << "Copying " << src.pString << endl;
 delete tgt.pString;
 tgt.nSize = src.nSize;

 tgt.pString = new char[tgt.nSize];
 strncpy(tgt.pString, src.pString, tgt.nSize);
 }
 int nSize;
 char* pString;
};

MyContainer fn(int n, const char* pString)
{
 MyContainer b(n, pString);
 return b;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 MyContainer mc(100, "Original");

 mc = fn(100, "Created in fn()");

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The output from this program appears as follows:

 Moving Created in fn()
Press Enter to continue...

The function fn() returns a temporary object that is moved over into the mc object using the move
assignment operator, operator=(MyContainer&&). The moveIt() function is a lot faster to execute
than the copyIt() function would have been — it doesn't allocate memory off of the heap or copy
anything. The moveIt() function simply takes the memory block from the src object which, in this
case, is the temporary returned from fn().

 Make sure that you zero out the pointer in the src object; otherwise, the destructor will
return the memory block to the heap, leaving the target object pointing to unallocated memory.

Chapter 23
Using Stream I/O

In This Chapter
 Performing input/output
 Rediscovering stream I/O as an overloaded operator
 Examining the other methods of the file class
 Using stream buffer I/O

Programs appearing before this chapter read from the cin input object and output through the cout
output object. Perhaps you haven't really thought about it much, but this input/output technique is a
subset of what is known as stream I/O.

In this chapter, I describe stream I/O in more detail. I must warn you that stream I/O is too large a
topic to be covered completely in a single chapter — entire books are devoted to this one topic.
Fortunately for both of us, there isn’t all that much that you need to know about stream I/O to write
the vast majority of programs.

How Stream I/O Works
Stream I/O is based on overloaded versions of operator>>() and operator<<(). The declaration
of these overloaded operators is found in the include file iostream, which are included in all the
programs in this book beginning with Chapter 1. The code for these functions is included in the
standard library, which your C++ program links with.

The following code shows just a few of the prototypes appearing in iostream:

 //for input we have:
istream& operator>>(istream& source, char *pDest);
istream& operator>>(istream& source, string &sDest);
istream& operator>>(istream& source, int &dest);
istream& operator>>(istream& source, double &dest);
//...and so forth...

//for output we have:
ostream& operator<<(ostream& dest, char *pSource);
ostream& operator<<(ostream& dest, string &sDest);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, double source);
//...and so it goes...

When overloaded to perform I/O, operator>>() is called the extractor and operator<<() is
called the inserter. The class istream is the basic class for input from a file or a device such as
the keyboard. C++ opens the istream object cin when the program starts. Similarly, ostream is the
basis for output. The prototypes above are for inserters and extractors for pointers to null
terminated character strings (like “My name”), for string objects, for ints, and for doubles.

Default stream objects
C++ adds a chunk of code to the front of your program that executes before main() gets control.
Among other things, this code creates the default input/output objects shown in Table 23-1.

Table 23-1 Standard Stream I/O Objects
Object Class Purpose

cin istream Standard char input

wcin wistream Standard wchar_t “wide char” input

cout ostream Standard char output

wcout wostream Standard wchar_t “wide char” output

cerr ostream Standard error output

wcerr wostream Standard error wchar_t “wide char” output

clog ostream Standard log

wclog ostream Standard wchar_t “wide char” log

You've seen cin and cout as they read input from the keyboard and output to the display,
respectively. The user can reroute standard input and standard output to a file when he executes a
program as follows:

 C:>MyProgram <InputFile.txt >DefaultOut.txt

Here the operator is saying “Execute MyProgram but read standard input from InputFile.txt
instead of the keyboard and send what would otherwise go to the standard output to the file
DefaultOut.txt.”

 Rerouting input and output works from the DOS prompt in Windows and under all versions
of Unix and Linux. It's the easiest way to perform file input/output when you're trying to write
something quick and dirty.

By default, the cerr object outputs to the display just like cout, except it is rerouted separately —
rerouting cout-type default output to a file does not reroute cerr output. This allows a program to
display error messages to the operator even if cout has been rerouted to a file.

 Error messages should be sent to cerr rather than cout just in case the operator has rerouted
standard output.

The wcin, wcout, and wcerr are wide version of standard input, output, and error, respectively.
These are designed to handle Unicode symbols:

 cout << "This is narrow output" << endl;
wcout << L"This is wide output" << endl;

Stream Input/Output
The classes ifstream and ofstream defined in the include file fstream are subclasses of istream
and ostream designed to perform stream input and output to disk files. You can use the same
extractors and inserters on ifstream and ofstream objects that you've been using on cin and cout.

 The ifstream is actually an instantiation of the template class basic_ifstream<T> with T
set to char. I discuss template classes in Chapter 26. The basic_ifstream<T> template class
is instantiated with other types as well to provide different types of input classes. For
example, the wide stream file class wifstream is based on the same basic_ifstream<T> with
T set to wchar_t. The ofstream is the same as basic_ofstream<char>.

The classes ifstream and ofstream provide constructors used to open a file for input and output,
respectively:

 ifstream::ifstream(const char *pszFileName,
ios_base::openmode mode = ios_base::in);
ofstream::ofstream(const char *pszFileName,
ios_base::openmode mode = ios_base::out|ios_base::trunc);

The first argument is a pointer to the name of the file to open. The second argument specifies the
mode. The type openmode is an integer type defined in ios_base. Also defined within ios_base
are the possible values for mode listed in Table 23-2. These are bit fields that the programmer
bitwise ORs together. (See Chapter 4 for an explanation of the ORing of bit fields.) The default
mode for ifstream is to open the file for input with the pointer set to the beginning of the file (that's
logical enough).

Table 23-2 Constants that Control How Files Are Opened
Flag Meaning

ios_base::app Seek to end-of-file before each write.

ios_base::ate Seek to end-of-file immediately after opening the file, if it exists.

ios_base::binary Open file in binary mode (alternative is text mode).

ios_base::in Open file for input (implied for istream).

ios_base::out Open file for output (implied for ostream).

ios_base::trunc Truncate file, if it exists (default for ostream).

The default for ofstream is to open for output and to truncate the file if it exists already. The
alternative to truncate is ios_base::app, which means append new output onto the end of the file if
it exists already. Both options create a file if it doesn't already exist.

For example, the following StreamOutput program opens the file MyName.txt and then writes
some important and absolutely true information to that file:

 // StreamOutput - simple output to a file
#include <fstream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 ofstream my("MyName.txt");
 my << "Stephen Davis is suave and handsome\n"
 << "and definitely not balding prematurely"
 << endl;
 return 0;
}

The destructor for the file stream classes automatically close the associated file. In my simple
example, the MyName.txt file was closed when the my object went out of scope upon returning
from main(). Global objects are closed as part of program termination.

Open modes
Table 23-2 shows the different modes that are possible when opening a file. However, you need to
answer three basic questions every time you open a file:

Do you want to read from the file or write to the file? Use ifstream to read and ofstream for
writing. If you intend to both write to and read from the same file, use the fstream and set
mode to in|out, but good luck — it's much better to write to a file completely and then close it
and reopen it for reading as a separate object.
If you are writing to the file and it already exists, do you want to add to the existing contents
(in which case, open with ate set) or truncate the file and start over (in which case use trunc)?
Are you reading or writing text or binary data? Both ifstream and ofstream default to text
mode. Use binary mode if you are reading or writing raw, non-text data.

The primary difference between binary and text mode lies in the way that newlines are handled.
The Unix operating system was written in the days when typewriters were still fashionable (when
it was called “typing” instead of “keyboarding”). Unix ended sentences with a linefeed followed
by a carriage return.

Subsequent operating systems saw no reason to continue using two characters to end a sentence,
but they couldn't agree on which character to use. Some use the carriage return, others used the
linefeed, now renamed newline. The C++ standard is the single newline.

When a file is opened in text mode, the C++ library converts the single newline character into
what is appropriate for your operating system on output, whether it's a carriage return plus
linefeed, a single carriage return, a linefeed, or something else entirely. It performs the opposite
conversion while reading a file. The C++ library does no such conversions for a file opened in
binary mode.

 Always use binary mode when manipulating a file that's not in human-readable format.
Otherwise, if a byte in the data stream just happens to be the same as a carriage return or a
linefeed, the file I/O library will modify it.

Hey, file, what state are you in?
A constructed fstream object (including ifstream and ofstream) becomes a proxy for the file that it
is associated with. For example, the stream object maintains state information about the I/O
process. The member function bad() returns true if something “bad” happens. That nebulous term
means that the file couldn't be opened, some internal object was messed up, or things are just
generally hosed. A lesser error fail() indicates that either something bad() happened or the last
read failed — for example, if you try to read an int and all the program can find is a character that
rates a fail() but not a bad(). The member function good() returns true if both bad() and fail() are
false.

Attempts to input from or output to a stream object that has an error set are ignored. The member
function clear() zeros out the fail flag to give you another chance if the error is temporary — in
general, clear() clears “failures” but not “bad” things. All attempts to output to an ofstream object
that has an error have no effect.

 This last paragraph is meant quite literally — no input or output is possible as long as the
internal error state of the stream object you're using is non-zero. The program won't even try
until you call clear() to clear the error flags if the error is temporary and you can clear it.

Can you show me an example?
The following example program demonstrates how to go about using the ifstream class to extract a
series of integers:

 // StreamInput - simple input from a file using fstream
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

ifstream& openFile()
{

 ifstream* pFileStream = 0;
 for(;;)
 {
 // open the file specified by the user
 string sFileName;
 cout << "Enter the name of a file with integers:";
 cin >> sFileName;

 //open file for reading
 pFileStream = new ifstream(sFileName.c_str());
 if (pFileStream->good())
 {
 pFileStream->seekg(0);
 cerr << "Successfully opened "
 << sFileName << endl;
 break;
 }
 cerr << "Couldn't open " << sFileName << endl;
 delete pFileStream;
 }
 return *pFileStream;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // get a file stream
 ifstream& fileStream = openFile();

 // stop when no more data in file
 while (!fileStream.eof())
 {
 // read a value
 int nValue = 0;
 fileStream >> nValue;

 // stop if the file read failed (probably because
 // we ran upon something that's not an int or
 // because we found a newline with nothing after
 // it)
 if (fileStream.fail())
 {
 break;
 }

 // output the value just read
 cout << nValue << endl;
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The function openFile() prompts the user for the name of a file to open. The function creates an
ifstream() object with the specified name. Creating an ifstream object automatically opens the file
for input. If the file is opened properly, the function returns a reference to the ifstream object to
use for reading. Otherwise, the program deletes the object and tries again. The only way to get out
of the loop is to enter a valid filename or abort the program.

 Don't forget to delete the pFileStream object if the open fails. These are the sneaky ways
that memory leaks creep in.

The program reads integer values from the object referenced by fileStream until either fail() or the
program reaches the end-of-file as indicated by the member function eof().

 Let me warn you one more time: Not only is nothing returned from reading an input stream
that has an error, but also the buffer comes back unchanged. This program can easily come to
the false conclusion that it has just read the same value it previously read. Furthermore, eof()
will never return a true on an input stream that has an error.

The output from this program appears as follows (I added boldface to my input):

 Enter the name of a file with integers:chicken
Couldn't open chicken
Enter the name of a file with integers:integers.txt
Successfully opened integers.txt
1
2
3
4
5
6
Press Enter to continue...

 Code::Blocks for Windows opens the console application in the project directory so all
you need to enter is the file name as shown. Code::Blocks for Macintosh opens the console
window in your user directory so you need to enter the entire path to the file:
Desktop/CPP_Programs_from_Book/Chap23/StreamInput/integers.txt
(assuming that you installed the source files in the default location).

Don't overflow that buffer!
If you look closely at the openfile() method in the StreamInput example program, you'll see yet another way to make sure
that the operator doesn't overflow the character buffer. Let's review. I could have used something like the following:

char szFileName[80]; // any array size is possible
cin >> szFileName; // input the name of the file to open

You can probably find code like this in the early chapters of this book (when you were still wearing your C++ training
wheels). The problem with this approach is that nothing tells the extractor that the buffer is only 80 characters long — it
will continue to read until it sees a newline, which might be thousands of characters later.

Well, 80 characters is a bit small. How about we increase the buffer size to 256 characters? That sort of misses the
point; the implicit assumption you are making with this type of approach is that any buffer overflow is the result of an
honest mistake (and a very long filename!). More and more this is not the case. Malicious users find ways to overflow
these fixed size buffers all the time. Several major worms have been launched on the backs of buffer overflow attacks. (I
will explain buffer overflows in detail in Chapter 28.)

One approach to avoiding buffer overflow that you have seen in earlier chapters is to use the getline() method to limit to
the size of the buffer the number of characters that the program will read:

char szFileName[80];
cin.getline(szFileName, 80); // read not more than 80 chars

This code segment says read a line of input (up to the next newline character) but not more than 80 characters since
that's the size of the buffer. Any characters not read are left for the next call to getline().

Another approach is to make the buffer size fit the number of available characters. The extractor for the string class is
smart enough to dynamically resize the buffer to fit the available data:

string sFileName;
cin >> sFileName; // string sizes buffer to fit amount of
data input

Other Methods of the Stream Classes
The istream and ostream classes provide a number of methods, as shown in Table 23-3 (this is
not a complete list). The prototypes for these functions reside in the fstream include file. They are
described in the remainder of this section.

Table 23-3 Major Methods of the I/O Stream Classes
Method Meaning

bool bad() Returns true if a serious error has occurred.

void clear(iostate flags =
ios_base::goodbit)

Clears (or sets) the I/O state flags.

void close() Closes the file associated with a stream object.

bool eof() Returns true if no more characters are left in the file to be read.

iostate exception() Returns the conditions that will cause an exception.

void exception(iostate)
Sets the conditions that will cause an exception. Multiple conditions can be ORed
together; e.g., exception(ios_base::badbit|ios_base::failbit). See Chapter 24 for a
discussion of exceptions.

char fill()char fill(char newFill) Returns or sets the fill character.

fmtflags flags()fmtflags
flags(fmtflags f)

Returns or sets format flags. (See the “Controlling format” section.)

void flush() Flushes the output buffer to the disk.

int gcount() Returns the number of bytes read during the last input.

char get() Reads individual characters from the file.

char getline(char* buffer, int
count, char delimiter = '\n')

Reads multiple characters either until the end-of-file, until a delimiter is encountered,
or until count - 1 characters read. Tack a null onto the end of the line read. Do not
store the delimiter read into the buffer.

bool good() Returns true if no error conditions are set.

void open(const char* filename,
openmode mode = default)

Same arguments as the constructor. Performs the same file open on an existing
object that the constructor performs when creating a new object.

streamsize precision() streamsize
precision(streamsize s)

Reads or sets the number of digits displayed for floating-point variables.

ostream& put(char ch) Writes a single character to the stream.

istream& read(char* buffer,
streamsize num)

Reads a block of data. Reads either num bytes or until an end-of-file is encountered,
whichever occurs first.

istream& seekg(pos_type
position)istream& seekg(off_type
offset, ios_base::seekdir)

Positions the read pointer either position bytes from the beginning of the file or offset
bytes from the current position.

istream& seekp(pos_type
position)istream& seekp(off_type
offset, ios_base::seekdir)

Positions the write pointer.

fmtflags setf(fmtflags) Sets specific format flags. Returns old value.

pos_type tellg() Returns the position of the read pointer.

pos_type tellp() Returns the position of the write pointer.

fmtflags unsetf(fmtflags) Clears specific format flags. Returns old value.

int width()int width(int w) Reads or sets the number of characters to be displayed by the next formatted
output statement.

ostream& write(const char*
buffer, streamsize num)

Writes a block of data to the output file.

Reading and writing streams directly
The inserter and extractor operators provide a convenient mechanism for reading formatted input.
However, sometimes you just want to say, “Give it to me; I don't care what the format is.” Several

methods are useful in this context.

The simplest function, get(), just returns the next character in the input file. Its output equivalent is
put(). The function getline() returns a string of characters up until some terminator — the default is
a newline. getline() strips off the terminator but makes no other attempt to reformat or otherwise
interpret the input.

The member function read() is even more basic. This function reads the number of characters that
you specify, or less if the program encounters an end-of-file. The function gcount() always returns
the actual number of characters read. The output equivalent is write().

The following example program uses the read() and write() functions to create a backup of any file
you give it by making a copy with the string “.backup” appended to the name:

 // FileCopy - make backup copies of the files passed
// to the program
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
using namespace std;

int main(int nNumberofArgs, char* pszArgs[])
{
 // repeat the process for every file passed
 for (int n = 1; n < nNumberofArgs; n++)
 {
 // create a filename and a ".backup" name
 string szSource(pszArgs[n]);
 string szTarget = szSource + ".backup";

 // now open the source for reading and the
 // target for writing
 ifstream input(szSource.c_str(),
 ios_base::in|ios_base::binary);

 ofstream output(szTarget.c_str(),
 ios_base::out|ios_base::binary|ios_base::trunc);
 if (input.good() && output.good())
 {
 cout << "Backing up " << szSource << "...";

 // read and write 4k blocks until either an
 // error occurs or the file reaches EOF
 while(!input.eof() && input.good())

 {
 char buffer[4096];
 input.read(buffer, 4096);
 output.write(buffer, input.gcount());
 }
 cout << "finished" << endl;
 }
 else
 {
 cerr << "Couldn't copy " << szSource << endl;
 }
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The program iterates through the arguments passed to it, remembering that pszArgs[0] points to the
name of the program itself. For every source file passed as an argument, the program creates the
target filename by tacking “.backup” onto the end. It then opens the source file for binary input and
the target for binary output, specifying to truncate the target file if it already exists.

If either the input or output object has an error set, the program outputs a “Couldn't copy” message
without attempting to figure out what went wrong. If both objects are good(), however, the
program enters a loop in which it reads 4K blocks from the input and writes them out to the
output.

Notice that in the call to write(), the program uses the value returned from gcount() rather than
hardcoding 4096. This is because, unless the source file just happens to be an integer multiple of
4096 bytes in length, the last call to read() will fetch less than the requested number of bytes
before encountering end-of-file.

Controlling format
The flags(), setf(), and unsetf() methods are all used to set or retrieve a set of format flags
maintained within the istream or ostream object. These format flags get set when the object is
created to a default value that represents the most common format options. The options are shown
in Table 23-4.

Table 23-4 The I/O Stream Format Flags
Flag If flag is true, then …

boolalpha Displays bool as either true or false rather than 1 or 0.

dec Reads or writes integers in decimal format (default).

fixed Displays floating point in fixed point as opposed to scientific (default).

hex Reads or writes integers in hexadecimal.

left Displays output left justified (i.e., pads on the right).

oct Reads or writes integers in octal.

right Displays output right justified (i.e., pads on the left).

scientific Displays floating point in scientific format.

showbase Displays a leading 0 for octal output and leading 0x for hexadecimal output.

showpoint Displays a decimal point for floating-point output even if the fractional portion is 0.

skipws Skips over whitespace when reading using the extractor.

unitbuf Flushes output after each output operation.

uppercase Replaces lowercase letters with their uppercase equivalents on output.

The following code segment has been used in the past to display numbers in hexadecimal format
(see the BitTest program in Chapter 4):

 // read the current format flags
// (this is important when you need to restore the output
// format at a later time)
ios_base::fmtflags prevValue = cout.flags();

// clear the decimal flag
cout.unsetf(cout.dec);

// now set the hexadecimal flag
cout.setf(cout.hex);

// ...do stuff..

// call flags() to restore the format flags to their
// previous value
cout.flags(prevValue);

In this example, the program must both set the hexadecimal flags using setf() and unset (that is,
clear) the decimal flag using unsetf() because the decimal, octal, and hexadecimal flags are
mutually exclusive.

The final call to flags() restores the format flags to their previously read value. This is not
necessary if the program is about to terminate anyway.

Further format control is provided by the width() method that sets the minimum width of the next
output operation. In the event that the field does not take up the full width specified, the inserter
adds the requisite number of fill characters. The default fill character is a space, but you can
change this by calling fill(). Whether C++ adds the fill characters on the left or right is determined
by whether the left or right format flag is set.

For example, the following segment

 int i = 123;
cout.setf(cout.right);
cout.unsetf(cout.left);
cout.fill('+');
cout << "i = [";
cout.width(10);
cout << i;
cout << "]" << endl;

generates the following output:

 i = [+++++++123]

 Notice that the width() method applies only to the very next output statement. Unlike the
other formatting flags, the width() must be reset after every value that you output.

What's up with endl?
Most programs in this book terminate an output stream by inserting the object endl. However,
some programs include \n within the text to output a newline. What's the deal?

The \n is, in fact, the newline character. The expression cout << “First line\nSecond line;
outputs two lines. The endl object outputs a newline, but continues one step further.

Disks are slow devices. Writing to disk more often than necessary will slow down your program
considerably. To avoid this, the fstream class collects output into an internal buffer known as a
cache (pronounced like “cash”). The class writes the contents to disk when the buffer is full (this
is known as flushing the cache). The endl object outputs a newline and then flushes the output
cache. The member function flush() flushes the output cache without tacking a newline onto the
end.

Note that the standard error object cerr does not buffer output.

Positioning the pointer within a file
The istream class maintains a read pointer that is the location within the file of the next byte to
read. This is measured as “number of bytes from the beginning of the file.” You can retrieve this
using the tellg() method. (Similarly, the tellp() returns a pointer to the next location to write in an
ostream object.) Having saved off the location, you can later return to the same location by
passing the value to seekg().

An overloaded version of seekg() takes not an absolute position but an offset and a seek direction.
The legal value for the seek direction is one of the following three constants:

ios_base::beg (beg for beginning of file): The offset must be positive and is taken to be the

number of bytes from the beginning of the file.
ios_base::end (end for end of file): The offset must be negative and is taken to be the number
of bytes from the end of the file.
ios_base::cur (cur for current position): The offset can be either positive or negative and is
the number of bytes to move the pointer (either forward or backward) from its current position.

Moving the read (or write) pointer around in a file can be very slow (in computer terms), so be
judicious in the use of this feature.

Using the stringstream Subclasses
The stream classes give the programmer mechanisms for easily breaking input among int, float,
and char array variables (among others). A set of so-called stringstream classes allow the
program to read from an array of characters in memory as if it were reading from a file. The
classes istringstream and ostringstream are defined in the include file sstream.

 The older versions of these classes are istrstream and ostrstream defined in the include
file strstream.

The stringstream classes have the same semantics as the corresponding file-based classes. This is
demonstrated in the following StringStream program, which parses account information from a
file:

 // StringStream - read and parse the contents of a file
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <sstream>
#include <iostream>
using namespace std;

// parseAccountInfo - read a passed buffer as if it were
// an actual file - read the following
// format:
// name, account balance
// return true if all worked well
bool parseString(const char* pString,
 char* pName, int arraySize,
 long& accountNum, double& balance)
{
 // associate an istrstream object with the input
 // character string

 istringstream inp(pString);

 // read up to the comma separator
 inp.getline(pName, arraySize, ',');

 // now the account number
 inp >> accountNum;

 // and the balance
 inp >> balance;

 // return the error status
 return !inp.fail();
}

int main(int nNumberofArgs, char* pszArgs[])
{
 // must provide filename
 char szFileName[128];
 cout << "Input name of file to parse:";
 cin.getline(szFileName, 128);

 // get a file stream
 ifstream* pFileStream = new ifstream(szFileName);
 if (!pFileStream->good())
 {
 cerr << "Can't open " << pszArgs[1] << endl;
 return 0;
 }

 // read a line out of file, parse it and display
 // results
 for(int nLineNum = 1;;nLineNum++)
 {
 // read a buffer
 char buffer[256];
 pFileStream->getline(buffer, 256);
 if (pFileStream->fail())
 {
 break;
 }
 cout << nLineNum << ":" << buffer << endl;

 // parse the individual fields
 char name[80];
 long accountNum;
 double balance;
 bool result = parseString(buffer, name, 80,
 accountNum, balance);
 if (result == false)
 {
 cerr << "Error parsing string\n" << endl;
 continue;
 }

 // output the fields we parsed out
 cout << "Read the following fields:" << endl;
 cout << " name = " << name << "\n"
 << " account = " << accountNum << "\n"
 << " balance = " << balance << endl;

 // put the fields back together in a different
 // order (inserting the 'ends' makes sure the
 // buffer is null terminated
 ostringstream out;
 out << name << ", "
 << balance << " "
 << accountNum << ends;

 string oString = out.str();
 cout << "Reordered fields: " << oString << endl;
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program begins by opening a file called Accounts.txt containing account information in
the format of name, accountNumber, balance,\n. Assuming that the file was opened successfully,
the program enters a loop, reading lines until the contents of the file are exhausted. The call to
getline() reads up to the default newline terminator. The program passes the line just read to the
function parseString().

parseString() associates an istringstream object with the character string. The program reads
characters up to the ',' (or the end of the string buffer) using the getline() member function. The

program then uses the conventional extractors to read accountNum and balance.

After the call to parseString(), main() outputs the buffer read from the file followed by the parsed
values. It then uses the ostringstream class to reconstruct a string object with the same data but a
different format (just for the fun of it).

The result from a sample execution appears as follows:

 Input name of file to parse:Accounts.txt
1:Chester, 12345 56.60
Read the following fields:
 name = Chester
 account = 12345
 balance = 56.6
Reordered fields: Chester, 56.6 12345
2:Arthur, 34567 67.50
Read the following fields:
 name = Arthur
 account = 34567
 balance = 67.5
Reordered fields: Arthur, 67.5 34567
3:Trudie, 56x78 78.90
Error parsing string

4:Valerie, 78901 89.10
Read the following fields:
 name = Valerie
 account = 78901
 balance = 89.1
Reordered fields: Valerie, 89.1 78901
Press Enter to continue ...

Reflect a second before continuing. Notice how the program was able to resync itself after the
error in the input file. Notice, also, the simplicity of the heart of the program, the parseString()
function. Consider what this function would look like without the benefit of the istringstream
class.

Manipulating Manipulators
You can use stream I/O to output numbers and character strings by using default formats. Usually
the defaults are fine, but sometimes they don’t cut it.

For example, I was less than tickled when the total from the result of a financial calculation from a
recent program appeared as 249.600006 rather than 249.6 (or, better yet, 249.60). There must be a
way to bend the defaults to my desires. True to form, C++ provides not one but two ways to

control the format of output.

 Depending on the default settings of your compiler, you may get 249.6 as your output.
Nevertheless, you really want 249.60.

First, you can control the format by invoking a series of member functions on the stream object.
For example, the number of significant digits to display is set by using the function precision() as
follows (see Table 23-3):

 #include <iostream>
void fn(double interest, double dollarAmount)
{
 cout << "Dollar amount = ";
 cout.precision(2);
 cout << dollarAmount;
 cout.precision(4);
 cout << interest << endl;
}

In this example, the function precision() sets the precision to 2 immediately before outputting the
value dollarAmount. This gives you a number such as 249.60, the type of result you want. It then
sets the precision to 4 before outputting the interest.

A second approach uses what are called manipulators. (Sounds like someone behind the scenes of
the New York Stock Exchange, doesn’t it?) Manipulators are objects defined in the include file
iomanip to have the same effect as the member function calls. (You must include iomanip to have
access to the manipulators.) The only advantage to manipulators is that the program can insert them
directly into the stream rather than resort to a separate function call.

The most common manipulators and their corresponding meanings are shown in Table 23-5.

Table 23-5 Common Manipulators and Stream Format Control
Functions
Manipulator Member Function Description

dec setf(dec) Sets radix to 10

hex setf(hex) Sets radix to 16

oct setf(oct) Sets radix to 8

setfill(c) fill(c) Sets the fill character to c

setprecision(n) precision(n) Sets display precision to n

setw(n) width(n) Sets width of field to n characters*

* This returns to its default value after the next field is output.

If you rewrite the preceding example to use manipulators, the program appears as follows:

 #include <iostream>
#include <iomanip>
void fn(double interest, double dollarAmount)
{
 cout << "Dollar amount = "
 << setprecision(2) << dollarAmount
 << setprecision(4) << interest << endl;

Chapter 24
Handling Errors — Exceptions

In This Chapter
 Introducing an exceptional way of handling program errors
 Finding what’s wrong with good ol’ error returns
 Examining throwing and catching exceptions
 Packing more heat into that throw

I know that it’s hard to accept, but occasionally functions don’t work properly — not even mine.
The traditional means of reporting failure is to return some indication to the caller. C++ includes a
mechanism for capturing and handling errors called exceptions. The handling of error conditions
with exceptions is the subject of this chapter.

The exception mechanism is based on the keywords try, catch, and throw (that’s right, more
variable names that you can’t use). In outline, it works like this: A function trys to get through a
piece of code. If the code detects a problem, it throws an error indication that the calling function
must catch.

The following code snippet demonstrates how that works in 1s and 0s:

 // FactorialException - demonstrate exceptions using
// a factorial function
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// factorial - compute factorial
int factorial(int n)
{
 // you can't handle negative values of n;
 // better check for that condition first
 if (n < 0)
 {
 throw string("Argument for factorial negative");
 }

 // go ahead and calculate factorial

 int accum = 1;
 while(n > 0)
 {
 accum *= n;
 n--;
 }
 return accum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 // this will work
 cout << "Factorial of 3 is "
 << factorial(3) << endl;

 // this will generate an exception
 cout << "Factorial of -1 is "
 << factorial(-1) << endl;

 // control will never get here
 cout << "Factorial of 5 is "
 << factorial(5) << endl;
 }
 // control passes here
 catch(string error)
 {
 cout << "Error occurred: " << error << endl;
 }
 catch(...)
 {
 cout << "Default catch " << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

main() starts out by creating a block outfitted with the try keyword. Within this block, it can
proceed the way it would if the block were not present. In this case, main() attempts to calculate
the factorial of a negative number. Not to be hoodwinked, the clever factorial() function detects
the bogus request and throws an error indication using the throw keyword. Control passes to the
catch phrase, which immediately follows the closing brace of the try block. The third call to
factorial() is not performed.

 Through a not-so-clever feature called an exception specification, you can add the type of
objects that factorial() throws to its declaration. At one time, someone thought this would be
a good idea, but times change. Exception specifications were never mandatory and have been
deprecated in the 2011 standard. Exception specifications are not presented in this book.

Justifying a New Error Mechanism?
What’s wrong with error returns like FORTRAN used to make? Factorials cannot be negative, so I
could have said something like “Okay, if factorial() detects an error, it returns a negative number.
The actual value indicates the source of the problem.” What’s wrong with that? That’s how it was
done for ages. (“If it was good enough for my grandpa…”)

Unfortunately, several problems arise. First, although it’s true that the result of a factorial can’t be
negative, other functions aren’t so lucky. For example, you can’t take the log of a negative number
either, but logarithms can be either negative or positive. There's no value that a logarithm function
can't return.

Second, there’s just so much information that you can store in an integer. Maybe you can have –1
for “argument is negative” and –2 for “argument is too large.” But, if the argument is too large, you
want to know what the argument is because that information might help you debug the problem.
There’s no place to store that type of information.

Third, the processing of error returns is optional. Suppose someone writes factorial() so that it
dutifully checks the argument and returns a negative number if the argument is out of range. If a
function that calls factorial() doesn’t check the error return, returning an error value doesn’t do
any good. Sure, you can make all kinds of menacing threats, such as “You will check your error
returns or else,” and the programmer may have the best of intentions, but you all know that people
get lazy and return to their old, non-error-checking ways.

Even if you do check the error return from factorial() or any other function, what can the function
do with the error? It can probably do nothing more than output an error message of its own and
return another error indication to the caller, which probably does the same. Pretty soon, there's
more error detection code than "real" code and it's all mixed together.

The exception mechanism addresses these problems by removing the error path from the normal
code path. Furthermore, exceptions make error handling obligatory. If your function doesn’t handle
the thrown exception, control passes up the chain of called functions until C++ finds a function to
handle the error. This also gives you the flexibility to ignore errors that you can’t do anything

about anyway. Only the functions that can actually handle the problem need to catch the exception.

Examining the Exception Mechanism
Take a closer look at the steps that the code goes through to handle an exception. When the throw
occurs, C++ first copies the thrown object to some neutral place. It then begins looking for the end
of the current try block.

If a try block is not found in the current function, control passes to the calling function. A search is
then made of that function. If no try block is found there, control passes to the function that called
it, and so on up the stack of calling functions. This process is called unwinding the stack.

An important feature of stack unwinding is that as each stack is unwound, objects that go out of
scope are destructed just as though the function had executed a return statement. This keeps the
program from losing assets or leaving objects dangling.

When the encasing try block is found, the code searches the first catch phrase immediately
following the closing brace of the catch block. If the object thrown matches the type of argument
specified in the catch statement, control passes to that catch phrase. If not, a check is made of the
next catch phrase. If no matching catch phrases are found, the code searches for the next higher
level try block in an ever-outward spiral until an appropriate catch can be found. If no catch
phrase is found, the program is terminated.

Consider the following example:

 // CascadingException - the following program demonstrates
// an example of stack unwinding
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// prototypes of some functions that we will need later
void f1();
void f2();
void f3();

class Obj
{
 public:
 Obj(char c) : label(c)
 { cout << "Constructing object " << label << endl;}
 ~Obj()
 { cout << "Destructing object " << label << endl; }

 protected:

 char label;
};

int main(int nNumberofArgs, char* pszArgs[])
{
 f1();

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

void f1()
{
 Obj a('a');
 try
 {
 Obj b('b');
 f2();
 }
 catch(float f)
 {
 cout << "Float catch" << endl;
 }
 catch(int i)
 {
 cout << "Int catch" << endl;
 }
 catch(...)
 {
 cout << string("Generic catch") << endl;
 }
}

void f2()
{
 try
 {
 Obj c('c');
 f3();

 }
 catch(string msg)
 {
 cout << "String catch" << endl;
 }
}

void f3()
{
 Obj d('d');
 throw 10;
}

The output from executing this program appears as follows:

 Constructing object a
Constructing object b
Constructing object c
Constructing object d
Destructing object d
Destructing object c
Destructing object b
Int catch
Destructing object a
Press Enter to continue...

First, you see the four objects a, b, c, and d being constructed as main() calls f1() which calls f2()
which calls f3(). Rather than return, however, f3() throws the integer 10. Because no try block is
defined in f3(), C++ unwinds f3()’s stack, causing object d to be destructed. The next function up
the chain, f2() defines a try block, but its only catch phrase is designed to handle a string, which
doesn’t match the int thrown. Therefore, C++ continues looking. This unwinds f2()’s stack,
resulting in object c being destructed.

Back in f1(), C++ finds another try block. Exiting that block causes object b to go out of scope.
C++ skips the first catch phrase for a float. The next catch phrase matches the int exactly, so C++
passes control to this phrase.

Control passes from the catch(int) phrase to the closing brace of the final catch phrase and from
there back to main(). The final catch(...) phrase, which would catch any object thrown, is skipped
because a matching catch phrase was already found.

What Kinds of Things Can I Throw?
The thing following the throw keyword is actually an expression that creates an object of some
kind. In the examples so far, I’ve thrown an int and a string object, but throw can handle any type

of object. This means you can throw almost as much information as you want. Consider the
following update to the factorial program, CustomExceptionClass:

 //
// CustomExceptionClass - demonstrate the flexibility
// of the exception mechanism by creating
// a custom exception class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
using namespace std;

// MyException - generic exception handling class
class MyException
{
 public:
 MyException(const char* pMsg, int n,
 const char* pFunc,
 const char* pFile, int nLine)
 : msg(pMsg), errorValue(n),
 funcName(pFunc), file(pFile), lineNum(nLine){}

 virtual string display()
 {
 ostringstream out;
 out << "Error <" << msg << ">"
 << " - value is " << errorValue << "\n"
 << "in function " << funcName << "()\n"
 << "in file " << file
 << " line #" << lineNum << ends;
 return out.str();
 }
 protected:
 // error message
 string msg;
 int errorValue;

 // function name, file name and line number
 // where error occurred
 string funcName;
 string file;
 int lineNum;

};

// factorial - compute factorial
int factorial(int n) throw(MyException)
{
 // you can't handle negative values of n;
 // better check for that condition first
 if (n < 0)
 {
 throw MyException("Negative argument not allowed",
 n, __func__, __FILE__, __LINE__);
 }

 // go ahead and calculate factorial
 int accum = 1;
 while(n > 0)
 {
 accum *= n;
 n--;
 }
 return accum;
}

int main(int nNumberofArgs, char* pszArgs[])
{
 try
 {
 // this will work
 cout << "Factorial of 3 is "
 << factorial(3) << endl;

 // this will generate an exception
 cout << "Factorial of -1 is "
 << factorial(-1) << endl;

 // control will never get here
 cout << "Factorial of 5 is "
 << factorial(5) << endl;
 }
 // control passes here
 catch(MyException e)
 {
 cout << e.display() << endl;

 }
 catch(...)
 {
 cout << "Default catch " << endl;
 }

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program appears much the same as the factorial program at the beginning of this chapter. The
difference is the use of a user-defined MyException class that contains more information
concerning the nature of the error than a simple string contains. The factorial program is able to
throw the error message, the illegal value, and the exact location where the error occurred.

 __FILE__, __LINE__, and __func__ are intrinsic #defines that are set to the name of the
source file, the current line number in that file, and the name of the current function,
respectively.

The catch snags the MyException object and then uses the built-in display() member function to
display the error message. (See Chapter 23 for a review of how to use the ostringstream class to
format an internal string.) The output from this program appears as follows:

 Factorial of 3 is 6
Error <Negative argument not allowed> - value is -1
in function factorial()
in file
C:\CPP_Programs_from_Book\Chap24\CustomExceptionClass\main.cpp
line #52
Press Enter to continue...

Just Passing Through
A function that allocates resources locally may need to catch an exception, do some processing,
and then rethrow it up the stack chain. Consider the following example:

 void fileFunc()
{
 ofstream* pOut = new ofstream("File.txt");
 otherFunction();

 delete pOut;
}

As anyone who's read Chapter 8 knows, the memory allocated by new isn’t returned to the heap
automatically. If otherFunction() were to throw an exception, control would exit the program
without invoking delete, and the memory allocated at the beginning of fileFunc() would be lost.

To avoid this problem, fileFunc() can include a catch(...) to catch any exception thrown:

 void fileFunc()
{
 ofstream* pOut = new ofstream("File.txt");
 try
 {
 otherFunction();

 delete pOut;
 }
 catch(...)
 {
 delete pOut;
 throw;
 }
}

Within this phrase, fileFunc() returns the memory it allocated earlier to the heap. However, it is
not in a position to process the remainder of the exception because it has no idea what could have
gone wrong. It doesn't even know what type of object it just caught.

The throw keyword without any arguments rethrows the current exception object back up the chain
to some function that can properly process the error.

Chapter 25
Inheriting Multiple Inheritance

In This Chapter
 Introducing multiple inheritance
 Avoiding ambiguities with multiple inheritance
 Avoiding ambiguities with virtual inheritance
 Figuring out the ordering rules for multiple constructors
 Getting a handle on problems with multiple inheritance

In the class hierarchies discussed in other chapters, each class inherits from a single parent. Such
single inheritance is sufficient to describe most real-world relationships. Some classes, however,
represent the blending of multiple classes into one. (Sounds sort of romantic, doesn't it?)

An example of such a class is the sleeper sofa that creates the unbeatable combination of a harsh
bed and an uncomfortable sofa. To adequately describe a sleeper sofa in C++, the sleeper sofa
should be able to inherit both bed- and sofa-like properties. This is called multiple inheritance.

Describing the Multiple Inheritance Mechanism
Figure 25-1 shows the inheritance graph for class SleeperSofa that inherits both from class Sofa
and from class Bed.

Figure 25-1: Class hierarchy of a sleeper sofa.

The code to implement class SleeperSofa looks like the following:

 // MultipleInheritance - a single class can inherit from
// more than one base class
//

#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

class Bed
{
 public:
 Bed(){}
 void sleep(){ cout << "Sleep" << endl; }
 int weight;
};

class Sofa
{
 public:
 Sofa(){}
 void watchTV(){ cout << "Watch TV" << endl; }
 int weight;
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(){}
 void foldOut(){ cout << "Fold out" << endl; }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 SleeperSofa ss;

 // you can watch TV on a sleeper sofa like a sofa...
 ss.watchTV(); // calls Sofa::watchTV()

 //...and then you can fold it out...
 ss.foldOut(); // calls SleeperSofa::foldOut()

 // ...and sleep on it
 ss.sleep(); // calls Bed::sleep()

 // wait until user is ready before terminating program

 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Here the classes Bed and Sofa appear as conventional classes. Unlike in earlier examples,
however, the class SleeperSofa inherits from both Bed and Sofa. This is apparent from the
appearance of both classes in the class declaration. SleeperSofa inherits all the members of both
base classes. Thus, both of the calls ss.sleep() and ss.watchTV() are legal. You can use a
SleeperSofa as a Bed or a Sofa. Plus the class SleeperSofa can have members of its own, such as
foldOut(). The output of this program appears as follows:

 Watch TV
Fold out
Sleep
Press Enter to continue...

Is this a great country or what?

Straightening Out Inheritance Ambiguities
Although multiple inheritance is a powerful feature, it introduces several possible problems. One
is apparent in the preceding example. Notice that both Bed and Sofa contain a member weight.
This is logical because both have a measurable weight. The question is, “Which weight does
SleeperSofa inherit?”

The answer is “both.” SleeperSofa inherits a member Bed::weight and a separate member
Sofa::weight. Because they have the same name, unqualified references to weight are now
ambiguous. This is demonstrated in the following snippet, which generates a compile-time error:

 #include <iostream>

void fn()
{
 SleeperSofa ss;
 cout << "weight = "
 << ss.weight // illegal - which weight?
 << "\n";
}

The program must now indicate one of the two weights by specifying the desired base class. The
following code snippet is correct:

 #include <iostream>

void fn()
{
 SleeperSofa ss;
 cout << "sofa weight = "
 << ss.Sofa::weight // specify which weight
 << "\n";
}

Although this solution corrects the problem, specifying the base class in the application function
isn’t desirable because it forces class information to leak outside the class into application code.
In this case, fn() has to know that SleeperSofa inherits from Sofa. These types of so-called name
collisions weren’t possible with single inheritance but are a constant danger with multiple
inheritance.

Adding Virtual Inheritance
In the case of SleeperSofa, the name collision on weight was more than a mere accident. A
SleeperSofa doesn’t have a bed weight separate from its sofa weight. The collision occurred
because this class hierarchy doesn’t completely describe the real world. Specifically, the classes
have not been completely factored.

Thinking about it a little more, it becomes clear that both beds and sofas are special cases of a
more fundamental concept: furniture. (I suppose I could get even more fundamental and use
something like object with mass, but furniture is fundamental enough.) Weight is a property of all
furniture. This relationship is shown in Figure 25-2.

Figure 25-2: Further factoring of beds and sofas (by weight).

Factoring out the class Furniture should relieve the name collision. With much relief and great
anticipation of success, I generate the C++ class hierarchy shown in the following program,

MultipleInheritanceFactoring:

 // MultipleInheritanceFactoring - a single class can
// inherit from more than one base class
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
#define TRYIT false
using namespace std;

// Furniture - more fundamental concept; this class
// has "weight" as a property
class Furniture
{
 public:
 Furniture(int w) : weight(w) {}
 int weight;
};

class Bed : public Furniture
{
 public:
 Bed(int weight) : Furniture(weight) {}
 void sleep(){ cout << "Sleep" << endl; }
};

class Sofa : public Furniture
{
 public:
 Sofa(int weight) : Furniture(weight) {}
 void watchTV(){ cout << "Watch TV" << endl; }
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(int weight) : Bed(weight), Sofa(weight) {}
 void foldOut(){ cout << "Fold out" << endl; }
};

int main(int nNumberofArgs, char* pszArgs[])
{

 SleeperSofa ss(10);

 // Section 1 -
 // the following is ambiguous; is this a
 // Furniture::Sofa or a Furniture::Bed?
#if TRYIT
 cout << "Weight = " << ss.weight << endl;
#endif

 // Section 2 -
 // the following specifies the inheritance path
 // unambiguously but it sort of ruins the effect
 SleeperSofa* pSS = &ss;
 Sofa* pSofa = (Sofa*)pSS;
 Furniture* pFurniture = (Furniture*)pSofa;
 cout << "Weight = " << pFurniture->weight << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Imagine my dismay when I find that this doesn’t help at all — the reference to weight in Section 1
of main() is still ambiguous. “Okay,” I say (not really understanding why weight is still
ambiguous), “I’ll try casting ss to a Furniture.”

 #include <iostream.h>

void fn()
{
 SleeperSofa ss;
 Furniture* pF;
 pF = (Furniture*)&ss; // use a Furniture pointer...
 cout << "weight = " // ...to get at the weight
 << pF->weight
 << "\n";
};

Casting ss to a Furniture doesn’t work either. Now, I get some strange message that the cast of
SleeperSofa* to Furniture* is ambiguous. What’s going on?

The explanation is straightforward. SleeperSofa doesn’t inherit from Furniture directly. Both Bed

and Sofa inherit from Furniture and then SleeperSofa inherits from them. In memory, a
SleeperSofa looks like Figure 25-3.

Figure 25-3: Memory layout of a SleeperSofa.

You can see that a SleeperSofa consists of a complete Bed followed by a complete Sofa followed
by some SleeperSofa unique stuff. Each of these subobjects in SleeperSofa has its own Furniture
part because each inherits from Furniture. Thus, a SleeperSofa contains two Furniture objects!

I haven’t created the hierarchy shown in Figure 25-2 after all. The inheritance hierarchy I’ve
actually created is the one shown in Figure 25-4.

Figure 25-4: Actual result of my first attempt.

The MultipleInheritanceFactoring program demonstrates this duplication of the base class.
Section 2 specifies exactly which weight object by recasting the pointer SleeperSofa first to a
Sofa* and then to a Furniture*.

But SleeperSofa containing two Furniture objects is nonsense. SleeperSofa needs only one copy
of Furniture. I want SleeperSofa to inherit only one copy of Furniture, and I want Bed and Sofa
to share that one copy. C++ calls this virtual inheritance because it uses the virtual keyword.

 This is another unfortunate (in my opinion) overloading of a keyword.

Armed with this new knowledge, I return to class SleeperSofa and implement it as follows:

 // VirtualInheritance - using virtual inheritance the
// Bed and Sofa classes can share a common base
//
#include <cstdio>
#include <cstdlib>
#include <iostream>
using namespace std;

// Furniture - more fundamental concept; this class
// has "weight" as a property
class Furniture
{
 public:
 Furniture(int w) : weight(w) {}
 int weight;
};

class Bed : virtual public Furniture
{
 public:
 Bed(int w = 0) : Furniture(w) {}
 void sleep(){ cout << "Sleep" << endl; }
};

class Sofa : virtual public Furniture
{
 public:
 Sofa(int w = 0) : Furniture(w) {}
 void watchTV(){ cout << "Watch TV" << endl; }
};

// SleeperSofa - is both a Bed and a Sofa
class SleeperSofa : public Bed, public Sofa
{
 public:
 SleeperSofa(int w) : Furniture(w) {}
 void foldOut(){ cout << "Fold out" << endl; }
};

int main(int nNumberofArgs, char* pszArgs[])
{
 SleeperSofa ss(10);

 // the following is no longer ambiguous;
 // there's only one weight shared between Sofa and Bed
 // Furniture::Sofa or a Furniture::Bed?
 cout << "Weight = " << ss.weight << endl;

 // wait until user is ready before terminating program
 // to allow the user to see the program results
 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

Notice the addition of the keyword virtual in the inheritance of Furniture in Bed and Sofa. This
says, “Give me a copy of Furniture unless you already have one somehow, in which case I’ll just
use that one.” A SleeperSofa ends up looking like Figure 25-5 in memory.

Figure 25-5: Memory layout of SleeperSofa with virtual inheritance.

Here you can see that a SleeperSofa inherits Furniture, and then Bed minus the Furniture part,
followed by Sofa minus the Furniture part. Bringing up the rear are the members unique to
SleeperSofa. (Note that this may not be the order of the elements in memory, but that’s not
important for the purpose of this discussion.)

Now the reference in fn() to weight is not ambiguous because a SleeperSofa contains only one
copy of Furniture. By inheriting Furniture virtually, you get the desired inheritance relationship
as expressed in Figure 25-2.

If virtual inheritance solves this problem so nicely, why isn’t it the norm? The first reason is that
virtually inherited base classes are handled internally much differently than normally inherited
base classes, and these differences involve extra overhead. The second reason is that sometimes
you want two copies of the base class.

As an example of the latter, consider a TeacherAssistant who is both a Student and a Teacher,
both of which are subclasses of Academician. If the university gives its teaching assistants two
IDs — a student ID and a separate teacher ID — the class TeacherAssistant will need to contain
two copies of class Academician.

Constructing the Objects of Multiple
Inheritance

The rules for constructing objects need to be expanded to handle multiple inheritance. The
constructors are invoked in the following order:

1. First, the constructor for any virtual base classes is called in the order in which the classes are
inherited.

2. Then the constructor for all non-virtual base classes is called in the order in which the classes
are inherited.

3. Next, the constructor for all member objects is called in the order in which the member objects
appear in the class.

4. Finally, the constructor for the class itself is called.

Notice that base classes are constructed in the order in which they are inherited and not in the
order in which they appear on the constructor line.

Voicing a Contrary Opinion
I should point out that not all object-oriented practitioners think that multiple inheritance is a good
idea. In addition, many object-oriented languages don’t support multiple inheritance.

Multiple inheritance is not an easy thing for the language to implement. This is mostly the
compiler’s problem (or the compiler writer’s problem). But multiple inheritance adds overhead to
the code when compared to single inheritance, and this overhead can become the programmer’s
problem.

More importantly, multiple inheritance opens the door to additional errors. First, ambiguities such
as those mentioned in the section “Straightening Out Inheritance Ambiguities” pop up. Second, in
the presence of multiple inheritance, casting a pointer from a subclass to a base class often
involves changing the value of the pointer in sophisticated and mysterious ways. Let me leave the
details to the language lawyers and compiler writers.

Third, the way in which constructors are invoked can be a little mysterious. Notice in the
VirtualInheritance example that SleeperSofa must invoke the Furniture constructor directly. The
SleeperSofa cannot initialize weight through either the Bed or the Sofa constructors.

I suggest that you avoid using multiple inheritance until you’re comfortable with C++. Single

inheritance provides enough expressive power to get used to.

 One exception is that it's fairly safe to multiply inherit a class that contains only pure
virtual methods and no data members. This is, in effect, C++'s implementation of what other
languages such as Java and C# call an interface. The topic of interfaces is a bit beyond the
scope of this book as it's not really a part of C++.

Chapter 26
Tempting C++ Templates

In This Chapter
 Examining how templates can be applied to functions
 Combining common functions into a single template definition
 Defining a template or class
 Implementing an initializer list for a user-defined class

The standard C++ library provides a complete set of math, time, input/output, and DOS
operations, to name just a few. Many of the earlier programs in this book use the so-called
character string functions defined in the include file strings. The argument types for many of these
functions are fixed. For example, both arguments to strcpy(char*, char*) must be a pointer to a
null-terminated character string — nothing else makes sense.

There are functions that are applicable to multiple types. Consider the example of the lowly
maximum() function, which returns the maximum of two arguments. All of the following variations
make sense:

 int maximum(int n1, int n2); // return max of two integers
unsigned maximum (unsigned u1, unsigned u2);
double maximum (double d1, double d2);
char maximum (char c1, char c2);

I would like to implement maximum() for all four cases.

Of course, I could overload maximum() with all the possible versions:

 double maximum(double d1, double d2)
{
 return (d1 > d2) ? d1:d2;
}
int maximum(int n1, int n2)
{
 return (n1 > n2) ? n1:n2;
}
char maximum(char c1, char c2)
{
 return (c1 > c2) ? c1:c2;
}

// ...repeat for all other numeric types...

This approach works. Now C++ selects the best match, maximum(int, int), for a reference such as
maximum(1, 2). However, creating the same function for each type of variable is a gross waste of
time.

The source code for all the maximum(T, T) functions follows the same pattern, where T is one of
the numeric types. It would be so convenient if you could write the function once and let C++
supply the type T as needed when the function is used. In fact, C++ lets you do exactly this. These
so-called template definitions are the subject of this chapter.

Generalizing a Function into a Template
A function template enables you to write something that looks like a function but uses one or more
type holders that C++ converts into a true type at compile time.

The following MaxTemplate program defines a template for a generic maximum() function:

 // MaxTemplate - create a template max() function
// that returns the greater of two types
#include <cstdio>
#include <cstdlib>
#include <iostream>

using namespace std;

template <class T> T maximum(T t1, T t2)
{
 return (t1 > t2) ? t1 : t2;
}

int main(int argc, char* pArgs[])
{
 // find the maximum of two int's;
 // here C++ creates maximum(int, int)
 cout << "maximum(-1, 2) = "<<maximum(-1, 2) << endl;

 // repeat for two doubles;
 // in this case, we have to provide T explicitly since
 // the types of the arguments are different
 cout << "maximum(1, 2.5) = "<<maximum<double>(1, 2.5)
 << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');

 cin.get();
 return 0;
}

The keyword template is followed by angle brackets containing one or more type holders known
as template parameters, each preceded by the keyword class, a constant, or both. In this case, the
definition of maximum<T>(T, T) will call the “unknown type” T. Following the angle brackets is
what looks like a normal function definition. In this case, the template function T maximum<T>(T
t1, T t2) returns the larger of two objects t1 and t2, each of which is of type T, where T is a class
to be defined later.

A template function is useless until it is converted into a real function. C++ replaces T with an
actual type known as a template argument. The main() function first invokes the template
definition, passing two arguments of type int. In this case, C++ can instantiate the template
providing int as the definition for T.

 Creating a function from a template is called instantiating the template.

The second call is a problem — no single type can be provided for T in the template definition
that matches both the int first argument and double second argument. Here the explicit reference
instantiates the function maximum(double, double). C++ promotes the int argument 1 to the double
1.0 before making the call.

The output from this program appears as follows:

 maximum(-1, 2) = 2
maximum(1, 2.5) = 2.5
Press Enter to continue...

 Be careful about terminology. For example, I used to be a hip, bad bicyclist, which is not
the same thing as a bad hip bicyclist. Here's another example: A function template is not a
function. The prototype for a function template is maximum<T>(T, T). The function that this
template creates when T is int is the function (not function template) maximum(int, int). Your
life will be easier if you remember to keep the terms straight.

Class Templates
C++ also allows the programmer to define class templates. A class template follows the same
principle of using a conventional class definition with a placeholder for some unknown support
classes. For example, the following TemplateVector program creates a vector for any class that
the user provides. (A vector is a type of container in which the objects are stored in a row; an
array is the classic vector example.)

I stored the TemplateVector class template definition in an include file called templatevector.h
that appears as follows:

 // TemplateVector - a simple templatized vector class
template <class T>
class TemplateVector
{
public:
 TemplateVector(int nArraySize)
 {
 // store off the number of elements
 nSize = nArraySize;
 array = new T[nArraySize];
 reset();
 }
 int size() { return nWriteIndex; }
 void reset() { nWriteIndex = 0; nReadIndex = 0; }
 void add(const T& object)
 {
 if (nWriteIndex < nSize)
 {
 array[nWriteIndex++] = object;
 }
 }
 T& get()
 {
 return array[nReadIndex++];
 }

 protected:
 int nSize;
 int nWriteIndex;
 int nReadIndex;
 T* array;
};

The following TemplateVector program includes and uses that template definition:

 // TemplateVector - implement a vector that uses a
// template type
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include "templatevector.h"

using namespace std;

// intFn() - manipulate a collection of integers
void intFn()
{
 // create a vector of integers
 TemplateVector<int> integers(10);

 // add values to the vector
 cout << "Enter integer values to add to a vector\n"
 << "(Enter a negative number to terminate):"
 << endl;
 for(;;)
 {
 int n;
 cin >> n;

 if (n < 0) { break; }
 integers.add(n);
 }

 cout << "\nHere are the numbers you entered:" << endl;
 for(int i = 0; i < integers.size(); i++)
 {
 cout << i << ":" << integers.get() << endl;
 }
}

// Names - create and manipulate a vector of names
class Name
{
 public:
 Name() = default;
 Name(string s) : name(s) {}
 const string& display() { return name; }
 protected:
 string name;
};

void nameFn()
{
 // create a vector of Name objects
 TemplateVector<Name> names(20);

 // add values to the vector
 cout << "Enter names to add to a second vector\n"
 << "(Enter an 'x' to quit):" << endl;
 for(;;)
 {
 string s;
 cin >> s;
 if (s == "x" || s == "X") { break; }
 names.add(Name(s));
 }

 cout << "\nHere are the names you entered" << endl;
 for(int i = 0; i < names.size(); i++)
 {
 Name& name = names.get();
 cout << i << ":" << name.display() << endl;
 }
}

int main(int argc, char* pArgs[])
{
 intFn();
 nameFn();

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The class template TemplateVector<T> contains an array of objects of class T. The class
template presents two member functions: add() and get(). The add() function adds an object of
class T into the next empty spot in the array. The corresponding function get() returns the next
object in the array. The nWriteIndex and nReadIndex members keep track of the next empty entry
and the next entry to read, respectively.

The intFn() function creates a vector of integers with room for 10 with the declaration:

 TemplateVector<int> integers(10);

The program reads integer values from the keyboard, saves them off, and then spits the values back
out using the functions provided by TemplateVector.

The second function, nameFn(), creates a vector of Name objects. Again, the function reads in

names and then displays them back to the user.

Notice that the TemplateVector handles both int values and Name objects with equal ease. Notice
also the similarity between the nameFn() and intFn() functions, even though integers and names
have nothing to do with each other.

A sample session appears as follows (I’ve bolded input from the keyboard):

 Enter integer values to add to a vector
(Enter a negative number to terminate):
5
10
15
-1

Here are the numbers you entered:
0:5
1:10
2:15
Enter names to add to a second vector
(Enter an 'x' to quit):
Chester
Trude
Lollie
Bodie
x

Here are the names you entered
0:Chester
1:Trude
2:Lollie
3:Bodie
Press Enter to continue...

Tips for Using Templates
You should remember a few things when using templates. First, no code is generated for a
template. (Code is generated after the template is converted into a concrete class or function.) This
implies that a .cpp source file is almost never associated with a class template. The entire class
template definition, including all the member functions, are usually contained in an include file so
that it can be available for the compiler to expand.

Second, a class template does not consume memory. Therefore, there is no penalty for creating
class templates if they are never instanced. On the other hand, a class template uses memory every
time it is instanced (except as noted in the next section). Thus, the code for Array<Student>

consumes memory even if Array<int> already exists.

Finally, a class template cannot be compiled and checked for errors until it is converted into a real
class. Thus, a program that references the class template Array<T> might compile even though
Array<T> contains obvious syntax errors. The errors won’t appear until a class such as
Array<int> or Array<Student> is created.

External Template Instantiations

 The TemplateVector example program instanced TemplateVector twice: once for integers
and once for Name objects. Once instanced, other functions within main.cpp could refer to
TemplateVector<int> without incurring any further penalty. However, suppose my program
included a second source module; say, secondModule.cpp. Now suppose that
secondModule.cpp also made use of TemplateVector<int>. This second module would
instantiate its own copy of TemplateVector<int>. For large programs, consisting of dozens
of separate modules, this could mean recompiling dozens of copies of the same code. This
can mean a lot of overhead both in compile time and in the size of the resulting code.

The 2011 standard adds the keyword extern to avoid this overhead. In this example, the
programmer would include the following declaration somewhere near the beginning of
secondModule.cpp:

 extern template class TemplateVector<int>;

This says, “don't instantiate another copy of TemplateVector<int> because some other module has
already instantiated one that you can use.”

Implementing an Initializer List
Simple arrays can be initialized with an initializer list as shown here:

 int myArray[] = {10, 20, 30, 40, 50};

 The 2011 standard implements a class template known as initializer_list<T> that
provides the same capability to user-defined containers.

 The Macintosh version of Code::Blocks does not support initializer lists as of this writing.

C++ 2011 converts a list of objects contained within braces into a vector of class
initializer_list<T>. The programmer can use this list to initialize a user-defined object. For
example, the TemplateVector class in the MyVector program adds the following constructor:

 class TemplateVector
{
 public:
 TemplateVector(const std::initializer_list<T> il) :
 TemplateVector(il.size())
 {
 // copy the contents of il into the vector
 for(const T* p = il.begin(); p < il.end(); p++)
 {
 add(*p);
 }
 }
 // ...the rest of the class is the same...
};

This allows the programmer to write the following:

 // MyVector - demonstrate the use of initializer list
#include <cstdlib>
#include <cstdio>
#include <iostream>
#include "templatevector.h"
using namespace std;

int main(int argc, char* pArgs[])
{
 // the following two are equivalent
 // TemplateVector<int> myVector{10, 20, 30, 40, 50};
 TemplateVector<int> myVector = {10, 20, 30, 40, 50};

 for(int i = 0; i < myVector.size(); i++)
 {
 cout << i << " : " << myVector.get() << "\n";
 }

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The list {10, 20, 30, 40, 50} is passed to the TemplateVector(initializer_list<int>) constructor.
That constructor first allocates a vector of length 5 and then copies the contents of the initializer
list into the vector. The output of this program appears as follows:

 0 : 10
1 : 20
2 : 30
3 : 40
4 : 50
Press Enter to continue...

Chapter 27
Standardizing on the Standard Template

Library
In This Chapter

 Using the string class
 Maintaining entries in a Standard Template Library list
 Accessing container elements from an iterator

Some programs can deal with data as it arrives and dispense with it. Most programs, however,
must store data for later processing. A structure that is used to store data is known generically as a
container or a collection. (I use the terms interchangeably.) This book has relied heavily on the
array for data storage so far. The array container has a couple of nice properties: It stores and
retrieves things quickly. In addition, the array can be declared to hold any type of object in a type-
safe way. Weighed against these advantages, however, are two large negatives.

First, you must know the size of the array at the time it is created. This requirement is generally not
achievable, although you will sometimes know that the number of elements cannot exceed some
“large value.” Viruses, however, commonly exploit this type of “it can't be larger than this”
assumption, which turns out to be incorrect. There is no real way to “grow” an array except to
declare a new array and copy the contents of the old array into the newer, larger version.

Second, inserting or removing elements anywhere within the array involves copying elements
within the array. This is costly in terms of both memory and computing time. Sorting the elements
within an array is even more expensive.

C++ now comes with the Standard Template Library, or STL, which includes many different types
of containers, each with its own set of advantages (and disadvantages).

 The C++ Standard Template Library is a very large library of sometimes-complex
containers. This session is considered just an overview of the power of the STL.

The string Container
The most common form of array is the null-terminated character string used to display text, which
clearly shows both the advantages and disadvantages of the array. Consider how easy the
following appears:

 cout << "This is a string";

But things go sour quickly when you try to perform an operation even as simple as concatenating
two of these null-terminated strings:

 char* concatCharString(const char* s1, const char* s2)
{
 int length = strlen(s1) + strlen(s2) + 1;
 char* s = new char[length];
 strcpy(s, s1);
 strcat(s, s2);
 return s;
}

The STL provides a string container to handle display strings. The string class provides a number
of operations (including overloaded operators) to simplify the manipulation of character strings
(see Table 27-1). The same concat() operation can be performed as follows using string objects:

 string concat(const string& s1, const string& s2)
{
 return s1 + s2;
}

Table 27-1 Major Methods of the string Class
Method Meaning

string() Creates an empty string object.

string(const char*) Creates a string object from a null-terminated character array.

string(const string& s) Creates a new string object as a copy of an existing string object s.

~string() Destructor returns internal memory to the heap.

string& operator=(const string& s) Overwrites the current object with a copy of the string s.

istream& operator>>()
Extracts a string from the input file. Stops when after istream::width()
characters read, error occurs, EOF encountered, or white space
encountered. Guaranteed to not overflow the internal buffer.

ostream& operator<<() Inserts string to the output file.

string operator+(const string& s1,const
string& s2)string operator+(const sring&
s1,const char* pszS2)

Creates a new string that is the concatenation of two existing strings.

string& operator+=(const string&
s);string& Operator+=(const char* pszS)

Appends a string to the end of the current string.

char& operator[](size_type index) Returns the index'th character of the current string.

bool operator==(const string& s1,const
string& s2)

Returns true if the two strings are lexicographically equivalent.

bool operator<(const string& s1,const
string& s2)

Returns true if s1 is lexicographically less than s2 (i.e., if s1 occurs
before s2 in the dictionary).

bool operator>(const string& s1,const
string& s2)

Returns true if s1 is lexicographically greater than s2 (i.e., if s1 occurs
after s2 in the dictionary).

string& append(const string& s)string&
append(const char* pszS)

Appends a string to the end of the current string.

char at(size_type index) Returns a reference to the index'th character in the current string.

size_t capacity() Returns the number of characters the current string object can
accommodate without allocating more space from the heap.

int compare(const string& s)
Returns < 0 if the current object is lexicographically less than s, 0 if the
current object is equal to s, and > 0 if the current object is greater than
s.

const char* c_str()const char* data() Returns a pointer to the null-terminated character array string within the
current object.

bool empty() Returns true if the current object is empty.

size_t find(const string& s,size_t index =
0);

Searches for the substring s within the current string starting at the
index'th character. Returns the index of the substring. Return string::npos
if the substring is not found.

string& insert(size_t index,const string&
s)string& insert(size_t index,const char*
pszS)

Inserts a string into the current string starting at offset index.

size_t max_size() Returns the maximum number of objects that a string object can hold,
ever.

string& replace(size_t index,size_t
num,const string& s)string& replace(size_t
index,size_t num,const char* pszS)

Replaces num characters in the current string starting at offset index.
Enlarges the size of the current string if necessary.

void resize(size_t size) Resizes the internal buffer to the specified length.

size_t size()size_t length() Returns the length of the current string.

string substr(size_t index,size_t length) Returns a string consisting of the current string starting at offset index
and continuing for length characters.

 The C++ '11 standard says that functions such as max_size() return a number of type
size_type. I have listed the argument types in Table 27-1 as size_t because that's the way they
are declared in the gcc compiler that comes with this book. Currently they are both synonyms
for unsigned long int. Be forewarned that at some future date these two types might diverge
and the argument types in Table 27-1 might change from size_t to size_type.

The following STLString program demonstrates just a few of the capabilities of the string class:

 // STLString - demonstrates just a few of the features
// of the string class which is part of the
// Standard Template Library
#include <cstdlib>
#include <cstdio>
#include <iostream>
using namespace std;

// removeSpaces - remove any spaces within a string
string removeSpaces(const string& source)

{
 // make a copy of the source string so that we don't
 // modify it
 string s = source;

 // find the offset of the first space;
 // search the string until no more spaces found
 size_t offset;
 while((offset = s.find(" ")) != string::npos)
 {
 // remove the space just discovered
 s.erase(offset, 1);
 }
 return s;
}

// insertPhrase - insert a phrase in the position of
// <ip> for insertion point
string insertPhrase(const string& source)
{
 string s = source;
 size_t offset = s.find("<ip>");
 if (offset != string::npos)
 {
 s.erase(offset, 4);
 s.insert(offset, "Randall");
 }
 return s;
}

int main(int argc, char* pArgs[])
{
 // create a string that is the sum of two strings
 cout << "string1 + string2 = "
 << (string("string 1") + string("string 2"))
 << endl;

 // create a test string and then remove all spaces
 // from it using simple string methods
 string s2("This is a test string");
 cout << "<" << s2 << "> minus spaces = <"
 << removeSpaces(s2) << ">" << endl;

 // insert a phrase within the middle of an existing
 // sentence (at the location of "<ip>")
 string s3 = "Stephen <ip> Davis";
 cout << s3 + " -> " + insertPhrase(s3) << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

The main() function begins by using operator+() to append two strings together. main() then calls
the removeSpaces() method to remove any spaces found in the string provided. It does this by
using the string.find() operation to return the offset of the first “ ” that it finds. Once found,
removeSpaces() uses the erase() method to remove the space. The function picks up where it left
off, searching for spaces and erasing them until find() returns npos, indicating that it didn't find
what it was looking for.

 The constant npos is a constant of type size_t that is the largest unsigned value possible. It
is numerically equal to –1. This is used for the “not found position” just like ‘\0' is the “non-
character.”

The insertPhrase() method uses the find() method to find the insertion point flagged by the
substring “<ip>”. The function then calls erase to remove the “<ip>” flag and string.insert() to
insert a new string in the middle of an existing string.

The resulting output is as follows:

 string1 + string2 = string1string2
<this is a test string> minus spaces = <thisisateststring>
Stephen <ip> Davis -> Stephen Randall Davis
Press Enter to continue...

 At its core, a string is still an array. The operations provided by the STL make it easier to
manipulate string objects but not that much faster. Inserting into the middle of a string still
involves moving the contents of arrays around.

 The string class is actually an instantiation of the class template basic_class<T> with T
set to char. The wstring class is another name for basic_class<wchar_t>. This class
provides the same character manipulations shown here for wide strings. The C++ '11

definition adds u16string and u32string, which extends the string manipulation methods to
UTF-16 and UTF-32 character strings. All comparisons between two string objects are
performed lexicographically — that is, which of the two strings would appear first in the
dictionary of the current language.

Iterating through Lists
The Standard Template Library provides a large number of containers — many more than I can
describe in a single chapter. However, I provide here a description of one of the more useful
families of containers.

The STL list container retains objects by linking them like Lego blocks. (Chapter 13 shows a
simplistic implementation of a linked list.) Objects can be snapped apart and snapped back
together in any order. This makes the list ideal for inserting objects and sorting, merging, and
otherwise rearranging objects. Table 27-2 shows some of the methods of the list containers.

Table 27-2 Major Methods of the list Template Class
Method Meaning

list<T>() Creates an empty list of objects of class T.

~list<T>() Destructs the list, including invoking the destructor on any T objects remaining in the
list.

list operator=(const list<T>& l) Replaces the contents of the current list with copies of the objects in list l.

bool operator==(const list<T>&
l1,const list<T>& l2)

Performs a lexicographic comparison between each element in the two lists.

list<T>::iterator begin() Returns an iterator that points to the first element in the current list.

void clear() Removes and destructs every object in the current list.

bool empty() Returns true if the current list is empty.

list<T>::iterator end() Returns an iterator that points to the next entry beyond the end of the current list.

list<T>::iterator
insert(list<T>::iterator
loc,const T& object)

Adds object to the list at the position pointed at by the iterator loc. Returns an
iterator that points to the added object.

void pop_back()void pop_front() Removes the last or first object from the current list.

void push_back(const T&
object)void push_front(const T&
object)

Adds an object to the end or front of the current list.

list<T>::reverse_iterator
rbegin()

Returns an iterator that points to the last entry in the list (useful when iterating
backward through the list, starting at the end and working toward the beginning).

list<T>::reverse_iterator rend() Returns an iterator that points to the entry before the first entry in the list (useful when
iterating backwards through the list).

void remove(const T& object) Removes all objects from the current list that are the same as object (as determined
by operator==(T&, T&)).

size_t size() Returns the number of entries in the current list.

void sort() Sorts the current list such that each object in the list is less than the next object as
determined by operator<(T&, T&).

void splice(list<T>::iterator
pos,list<T>& source)

Removes the objects from the source list and adds them to the current list in front of
the object referenced by pos.

void unique() Removes any subsequent equal objects (as determined by operator==(T&, T&)).

The constructor for list<T> creates an empty list. Objects can be added either to the front or end
of the list using push_front() or push_back(). For example, the following code snippet creates an
empty list of Student objects and adds two students to the list:

 list<Student> students;
students.push_back(Student("Dewie Cheatum"));
students.push_back(Student("Marion Haste"));

Making your way through a list
The programmer iterates through an array by providing the index of each element. However, this
technique doesn't work for containers like list that don't allow for random access. One could
imagine a solution based in methods such as getFirst() and getNext(); however, the designers of
the Standard Template Library wanted to provide a common method for traversing any type of
container. For this, the Standard Template Library defines the iterator.

An iterator is an object that points to the members of a container. In general, every iterator
supports the following functions:

A class can return an iterator that points to the first member of the collection.
The iterator can be moved from one member to the next.
The iterator returns an indication when it reaches the end of the list.
The program can retrieve the element pointed to by the iterator.

 The Standard Template Library also provides reverse iterators for moving backward
through lists. Everything I say about iterators applies equally for reverse iterators.

The code necessary to iterate through a list is different from that necessary to traverse a vector (to
name just two examples). However, the iterator hides these details.

The method begin() returns an iterator that points to the first element of a list. The indirection
operator*() retrieves a reference to the object pointed at by the iterator. The ++ operator moves
the iterator to the next element in the list. A program continues to increment its way through the list
until the iterator is equal to the value returned by end(). The following code snippet starts at the
beginning of a list of students and displays each of their names:

 void displayStudents(list<Student>& students)
{
 // allocate an iterator that points to the first
 // element in the list

 list<Student>::iterator iter = students.begin();

 // continue to loop through the list until the
 // iterator hits the end of the list
 while(iter != students.end())
 {
 // retrieve the Student the iterator points at
 Student& s = *iter;
 cout << s.sName << endl;

 // now move the iterator over to the next element
 // in the list
 iter++;
 }
}

 Declarations for iterators can get very complex. This is probably the best justification for
the auto declaration introduced with the '11 standard:

 for(auto iter = students.begin(); iter != students.end();
iter++)
{
 cout << iter->sName << endl;
}

This declares iter to be an iterator of whatever type is returned by the method
list<Student>::begin(), avoiding the tortured declarations shown in the earlier code snippet. How
cool is that!

Operations on an entire list
The STL library defines certain operations on the entire list. For example, the list<T&>::sort()
method says “I'll sort the list for you if you'll just tell me which objects go first.” You do this by
defining operator<(const T&, const T&). This operator is already defined for the intrinsic types
and many library classes such as string. For example, you don't have to do anything to sort a list of
integers:

 list<int> scores;
scores.push_back(10);
scores.push_back(1);
scores.push_back(5);
scores.sort();

The programmer must define her own comparison operator for her own classes if she wants C++

to sort them. For example, the following comparison sorts Student objects by their student ID:

 bool operator<(const Student& s1, const Student& s2)
{
 return s1.ssID < s2.ssID;
}

Can you show me an example?
The following STLListStudents program demonstrates several functions you've seen in this
section. It creates a list of user-defined Student objects, iterates the list, and sorts the list.

The program appears as follows:

 // STLListStudents - use a list to contain and sort a
// user defined class
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <list>

using namespace std;

// Student - some example user defined class
class Student
{
 public:
 Student(const char* pszS, int id)
 : sName(pszS), ssID(id) {}
 string sName;
 int ssID;
};

// the following function is required to support the
// sort operation
bool operator<(const Student& s1, const Student& s2)
{
 return s1.ssID < s2.ssID;
}

// displayStudents - iterate through the list displaying
// each element
void displayStudents(list<Student>& students)
{
 // allocate an iterator that points to the first
 // element in the list

 // list<Student>::iterator iter = students.begin();
 auto iter = students.begin();

 // continue to loop through the list until the
 // iterator hits the end of the list
 while(iter != students.end())
 {
 // retrieve the Student the iterator points at
 Student& s = *iter;
 cout << s.ssID << " - " << s.sName << endl;

 // now move the iterator over to the next element
 // in the list
 iter++;
 }
}

int main(int argc, char* pArgs[])
{
 // define a collection of students
 list<Student> students;

 // add three student objects to the list
 students.push_back(Student("Marion Haste", 10));
 students.push_back(Student("Dewie Cheatum", 5));
 students.push_back(Student("Stew Dent", 15));

 // display the list
 cout << "The original list:" << endl;
 displayStudents(students);

 // now sort the list and redisplay
 students.sort();
 cout << "\nThe sorted list:" << endl;
 displayStudents(students);

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 return 0;
}

This program defines a list of user-defined Student objects. Three calls to push_back() add

elements to the list (hard-coding these calls keeps the program smaller). The program then calls
displayStudents() to display the contents of the list both before and after the list has been sorted
using the template library sort() function.

The output of this program appears as follows:

 The original list:
10 - Marion Haste
5 - Dewie Cheatum
15 - Stew Dent

The sorted list:
5 - Dewie Cheatum
10 - Marion Haste
15 - Stew Dent
Press Enter to continue...

 The iterator iter is declared twice in this program. Use the auto version if your compiler is
compliant with the 2011 standard. Comment out that line and uncomment the more
complicated declaration before it, if not.

Chapter 28
Writing Hacker-Proof Code

In This Chapter
 How to avoid becoming a soldier in someone's botnet army
 Getting a handle on SQL injection
 Understanding buffer overflow hacks
 Defensive programming against buffer overflows
 Getting a little help from the operating system

In the interest of full disclosure, I should admit right now: I'm not sure that it's possible to write
hacker-proof code. Those slippery devils always seem to find a way. But by knowing some of
their tricks and how to counter them, you can write programs that are very hacker resistant.

There is more to hacker-proofing that just writing code. Program protection takes a multitude of
forms which I describe in Chapter 30. However, since this book is about writing programs, after
all, and since code writing is probably the most important component to hacker-proofing, let's start
there.

Understanding the Hacker's Motives
Why would a hacker want to break into one of the lowly C++ console programs presented in this
book? The short answer is, “He wouldn't.” The programs in this book are all written to be
executed from the keyboard at normal user privileges. If the user can get to the keyboard to execute
one of these programs, then he can execute any other command that he wants. He doesn't need to
resort to hacks.

Think a little further into the future, however. After you've finished this book and sharpened your
C++ skills, you land that really sweet job that you were looking for at the, hmmm, at the bank.
Yeah, that's the ticket. You're a big-time programmer at the bank, and you've just finished writing
the back-end code for some awesome ledger application that customers use to balance their
accounts. Performance is great because it's C++, and the customers love it. You're looking
forward to that big bonus that's surely coming your way. Then you get called to the Department
Vice President's office. Seems that hackers have found a way to get into your program from its
interface to the Internet and transferred money from other peoples' accounts into their own.
Millions have been lost. Disaster! No bonus. No promotion. Nobody will sit with you in the
cafeteria. Your kids get bullied on the playground. You'll be lucky to keep your now greatly
reduced job.

The point of this story is that real world programs often have multiple interfaces unlike the simple

programs in this book. For example, any program that reads a port or connects to a database is
susceptible to being hacked.

What is the hacker after:

If you're lucky, the hacker is doing nothing more than exploiting some flaw in your program's
logic to cause it to crash. As long as the program is crashed, no one else can use it. This is
called a Denial of Service (DoS) attack because it denies the service provided by your
program to everyone else.

DoS attacks can be expensive because they can cost your company lost revenue from business
that doesn't get conducted or customers who give up in frustration because your program is not
taking calls right now. And this doesn't even include the cost of someone going into the code to
find and fix the susceptibility.

Some hackers are trying to get access to information that your program has access to but to
which the user has no right. A good example of this would be identify theft.

The loss of information is more than embarrassing as a good hacker may be able to use this
information to turn around and steal. For example, armed with the proper credentials, the
hacker can then call up a bank teller on the phone and order sums of money be transferred from
our hacked customers' accounts to his own where he can subsequently withdraw the funds.
This is commonly the case with SQL injection attacks, which I describe in the following
section.

Finally, some hackers are after remote control of your computer. If your program opens a
connection to the Internet and a hacker can get your program to execute the proper system calls,
that hacker can turn your program into a remote terminal into your system. From there, the
hacker can download his own program onto your machine, and from then on you are said to be
owned.

Perhaps the hacker wants access to your accounts, where he can steal money, or maybe he just
wants your computer itself. This is the case with groups of owned computers that make up
what is known as a botnet.

But how does this work? Your bank program has a very limited interface. It asks the user for
his account number, his name, and the amount of his deposit. Nowhere does it say, “Would you
like to take over this computer?” or “What extra code would you like this computer to
execute?”

The two most common hacker tricks that you must deal with in your code are code injection and
buffer overflow.

A bot-what?

The term botnet is a contract of “robot network,” meaning a network of roboted (also called zombie) computers. A
zombied computer runs along like normal as long as it's not needed. It can run spreadsheets and Code::Blocks and
whatever else, but sitting deep in the background is a backdoor that's open to the person with the proper program and
the passwords — the botnet master.

When the botnet master decides he needs the zombie computer, he sends commands to his slave, and it dutifully
starts carrying out the master's instructions. The owner of the zombied computer may not even notice that there's
anything wrong, other than the fact that his computer runs kind of slow sometimes.

Botnets can do lots of things, but one of their best tricks is to swamp legitimate Web sites with bogus requests in
another form of Denial of Service attack. Suppose, for example, that you don’t like the Brotherhood of Aryan
Goatherders, and you want to bring down their BAG site so that no one can read their lies. You try to swamp the site
with requests from your computer, but you can't because the BAG's computer is just as fast as yours. So you buy four
or five computers and have all of them hit their Web site at once. That works for a few minutes, but it doesn't take long
to figure out that all these requests are coming from just a few source IP addresses, so the system administrator for the
Brotherhood (very unfairly) blocks requests from your PCs!

But what if you could rent the services of a botnet army consisting of thousands of PCs all over the world? Each
computer has to generate only a few requests per second in order to bring the BAG site completely to its knees. And
what can the system administrator do about it? He can't block every PC he sees without blocking legitimate users of the
site. The BAG might as well just give up and close the site down.

Understanding Code Injection
Code injection occurs when the user entices your program to execute some piece of user-created
code. “What? My program would never do that!” you say. Consider the most common and,
fortunately for us, easiest to understand variant of this little scam: SQL injection.

Examining an example SQL injection
Let me start with a few facts about SQL:

SQL (often pronounced “sequel”) stands for Structured Query Language.
SQL is the most common language for accessing databases.
SQL is used almost universally in accessing relational databases.
SQL is not the subject of this book.

This last bullet is important because I have no intent of teaching you SQL just so you can follow
the examples presented here. If you don't already know SQL, it's sufficient to say that SQL is often
interpreted at runtime. Very often, C++ statements will send an SQL query to a separate database
server and then process and display whatever the server sends back. A typical SQL query within a
C++ program might look like the following:

 char* query = "SELECT * FROM transactions WHERE
accountID='123456789';"
results = submit(query);

This code says, “SELECT all of the fields FROM the transactions table WHERE the accountID
(presumably one of the fields in the transaction table) is equal to 123456789 (the user's account

id).” The submit() library function might send this query off to the database server. The database
server would respond with all of the data it has on every transaction that the user has ever made on
this account, which would get stored into the collection results. The program would then iterate
through results, probably displaying the transactions in a table with each transaction on a separate
row.

The user probably doesn't need that much data. Maybe just those transactions between startDate
and endDate, two variables that the program reads from the user's query page. This more selective
C++ program might contain a statement like the following:

 char* query = "SELECT * FROM transactions WHERE
accountID='123456789'"
 " AND date > '" + startDate + "' AND date < '" +
endDate + "';";

If the user enters 2013/10/1 for a startDate and 2013/11/1 for endDate, then the resulting query
that gets sent to the database is the following:

 SELECT * FROM transactions WHERE accountID='123456789' AND
 date > '2013/10/1' AND date < '2013/11/1';

In other words, show all the transactions made in the month of October 2013. That makes sense.
What's the problem?

The problem arises if the program just accepts whatever the user enters as start and end dates and
plugs them into the query. It doesn't do any checking to make sure that the user is entering just a
date and nothing but a date. This program is far too trusting.

What if a hacker were to enter 2013/10/1 for the startDate, but for the endDate he were to enter
something like 2013/11/1' OR accountID='234567890. (Notice the unbalanced single quotes.)
Now the combined SQL query that gets sent to the database server would look like

 SELECT * FROM transactions WHERE accountID='123456789' AND
 date > '2013/10/1' AND date < '2013/11/1' OR
 accountID='234567890';

This says, “Show me all the transactions for the account 123456789 for the month of October
2013, plus all the transactions for some other account 234567890 that I don't own for any date.”

This little example may raise a few questions in the reader's mind: “How did the hacker know that
he could enter SQL statements in place of dates?” He doesn't know — he just tries entering bogus
SQL into every field that accepts character text and sees what happens. If the program complains,
“That's not a legal date,” then the hacker knows that the program checks to make sure that input
dates are valid and SQL injection won't work here. If, on the other hand, the program displays an
error message like Illegal SQL statement, then the hacker knows that the program accepted the
bogus input and shipped it off to the database server which then kicked it back. Success! Now all
he has to do is formulate the query just right.

So how did the hacker know that the account ID was called accountID? He didn't know that

either, but how long would it take to guess that one? Hackers are very persistent.

Finally, how did the hacker know that 234567890 was a valid account number? Again, he didn't
— but do you really think that the hacker's going to stop there? Heck no. He's going to try every
combination of digits he can think of until he finds some really big accounts with really big
balances that are worth stealing from.

Let me assure you of three things:

SQL injection was very common years ago.
It was just this simple.
With a better knowledge of SQL and some really tortured syntax, a good hacker can do almost
anything he wants with an SQL injection like this.

So how can the programmer avoid this hack?

Avoiding code injection
The first rule of avoiding code inject is never, ever, allow user input to be processed by a general-
purpose language interpreter. The error with the SQL-injection example was that the program
accepted user input as if it were always a date and inserted it into an SQL query that it then
shipped off to the database engine for processing.

The safest and most user-friendly approach would have been to provide the user a calendar
graphic from which he could select the start and end dates. The program would then create a date
based on what the user clicked. If this is not possible, then the program should have carefully
checked the input to make sure that the input was in the proper format for a date, in this case
yyyy/mm/dd — in other words, four digits followed by a slash followed by two digits and a slash
and finally two more digits. Nothing else should be considered acceptable input.

Sometimes you can't be that specific about the format. If you must allow the user to enter flexible
text, then you can at least avoid special characters. For example, it's pretty much impossible to do
SQL code injection without using either a single or double quote. You can't insert HTML tags
without using a less than (<) and greater than (>) sign. Or you could just take the approach that
anything other than ASCII text will not be tolerated:

 // check some string 's' to make sure it's straight ASCII
size_type off = s.find_first_not_of(
 "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234567890_");
if (off != string::npos)
{
 cerr << "Error\n";
}

This code searches the string s for a character that's not one of the characters A through Z, a
through z, 0 through 9, or underscore. If it finds such a character, then the program rejects the input.

 If you allow only the Latin characters shown here, your application will not be useable in
many foreign markets such as those that don't use English character sets (such as Arabic,
Chinese, Hebrew, or Russian, to name just a few). You may have to take the opposite
approach and just look for the bad characters.

Overflowing Buffers for Fun and Profit
The second common hacker method that I present is the dreaded buffer overflow. First you'll see a
very small program with a very big vulnerability. You'll see how this vulnerability comes about
and how it can be exploited by a hacker. Then you'll see a number of different ways to mitigate the
vulnerability.

Can I see an example?
Consider the smallest, simplest hackable program that I could devise:

 // BufferOverflow - this program demonstrates how a
// program that reads data into a fixed
// length buffer without checking can be
// hacked
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <cstring>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 char buffer[64];

 // now input a string from the file
 char* pB;
 for(pB = buffer;*pB = cin.get(); pB++)
 {
 if (cin.eof())
 {
 break;
 }

 }
 *pB = '\0';

 // return a copy of the string to the caller
 pB = new char[strlen(buffer) + 1];
 strcpy(pB, buffer);
 return pB;
}

int main(int argc, char* pArgv[])
{
 // get the name of the file to read
 cout <<"This program reads input from an input file\n"
 "Enter the name of the file:";
 string sName;
 cin >> sName;

 // open the file
 ifstream c(sName.c_str());
 if (!c)
 {
 cout << "\nError opening input file" << endl;
 exit(-1);
 }

 // read the file's content into a string
 char* pB = getString(c);

 // output what we got
 cout << "\nWe successfully read in:\n" << pB << endl;

 cout << "Press Enter to continue..." << endl;
 cin.ignore(10, '\n');
 cin.get();
 printf("Done!");
 exit(0);
 return 0;
}

This program starts by prompting the user for the name of a file. The program then opens that file
and passes the open file handle to the function getString(). This function does nothing more than
read the contents of the file into a buffer, create a copy of that buffer in a memory block that it
allocates off of the heap, and then returns that chunk of heap memory to the caller.

The output from a sample run of this program appears as follows:

 This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

Here the user told the program to read the file OK_File.txt and display the results, which it did.

 Code::Blocks for Windows opens the console application in the project directory so all
you need to enter is the file name OK_File.txt as shown. Code::Blocks for Macintosh opens
the console window in your user directory so you need to enter the entire path to the file:
Desktop/CPP_Programs_from_Book/Chap28/BufferOverflow/OK_File.txt (assuming that
you installed the source files in the default location). This same tip is applicable to every file
in this chapter.

The problem with this program lies in getString(). The programmer was told that each input file
contains a short string of not more than 20 characters. Not wanting to be stingy, she allocated a 64-
character buffer just to make sure that there was enough room to hold the file contents. The file
OK_File.txt contains the string This is benign input. which may have been a little longer than the
promised 20 characters but fits comfortably within the 64-character buffer. But let's try the
program again with the file Big_File.txt; the output of this run is shown in Figure 28-1.

Figure 28-1: The result of executing the BufferOverflow program on Big_File.txt.

When presented this new file, the BufferOverflow program crashed rather than generating any
reasonable output.

What you don't know is that the file Big_File.txt contains the following:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789

“Wait a minute!” you say. “That's not fair. That file contains more than 20 characters.” True. And
it contains more than 64 characters, and for some reason that caused the program to crash. Hackers
don't play fair.

How does a call stack up?

 This entire section is fairly technical. You can skip it if you're not into the details of
computer memory.

Consider how computer memory is laid out: There are variables known as global variables that
are accessible to all functions. These variables reside at fixed memory locations so that everyone
can find them. But most variables are declared within the scope of a single function. The memory
for these variables is allocated when the function is called and is deallocated when the function
returns. Computers do this through a mechanism known as the stack.

The stack pointer (which in assembly language parlance normally carries the name ESP) points to
the next available location on the stack. A function can invoke a PUSH instruction to save a value
in a register to the stack. This automatically decrements the ESP so that the memory isn't used for
something else. A corresponding POP instruction restores the value to the register and increments
the ESP back to its original pre-PUSH location.

Another value that gets pushed onto the stack is the return address whenever a function is called.
The 80x86's instruction CALL getString pushes the next address onto the stack and then jumps to
the address of the getString() function. This is shown graphically as a busy but interesting capture
from the Code::Blocks debugger in Figure 28-2.

Figure 28-2: The ESP and the stack memory immediately before the call to getString().

The program is stopped at the beginning of the call to getString() (which you can tell by the
yellow arrows in Figure 28-2, both in the right source view that shows only the C++ source and in
the left mixed disassembly view that shows the C++ source and the 80x86 assembly language that
was generated.) Notice on the left that the instruction after the CALL to getString() is
0x0046AA6C. The CPU Registers window shows that the value of the ESP is 0x0028FDC0.

Figure 28-3 shows the same windows immediately after the call to getString(). Notice that the
ESP has been decremented by 4 bytes (the size of a return address) to 0x0028FDBC and that the
ESP now points to the value 0x0046AA6C, the address of the next instruction after the CALL. This
is called the return address.

 What you actually see on the stack in Figure 28-3 is 6C-AA-46-00. This is because the
80x86 processor stores all values with the least significant byte at the smallest address. This
is called Little Endian.

Figure 28-3: The ESP and the stack memory immediately after the call to getString().

Figure 28-4 shows the situation immediately after a successful return from getString(). The small
yellow arrow in the disassembly window shows that the instruction pointer is indeed pointing to
the instruction immediately after the CALL and the ESP has returned to its former value of
0x0028FDC0.

That's all very nice, but so what? Well, C++ also stores locally defined variables on the stack. For
example, the 64-byte buffer in getString() is stored on the stack. As long as the program writes
only 64 bytes (or less) into this buffer, everything is fine; but if the program tries to write more
data into buffer than buffer can hold, the remaining data spills over and starts overwriting other
data. If the program writes far enough, it will eventually overwrite the return address. This is
exactly what happened when getString() read the oversized Big_File.txt. This is shown in Figure
28-5.

Figure 28-4: The ESP and the stack memory immediately after the return from getString().

Figure 28-5: The return address on the stack are overwritten when getString() tries to read Big_File.txt.

You can see that the location 0x0028FDC0 no longer contains the return address, but rather the
value 0x46454443, which happens to be the ASCII characters “FEDC”, which you can also see
along with many of the other characters from Big_File.txt on the right of Figure 28-5.

 Remember to read the bytes from right to left since the 80x86 is Little Endian.

This doesn't cause a problem as long as the program is processing through getString(), but when
the program tries to return, the return address that’s on the stack is not a return address at all.
Instead, it points to some illegal address, and the program crashes as soon as it executes the RET
statement at the end of getString().

Hacking BufferOverflow
The BufferOverflow program crashed because the contents of Big_File.txt overflowed buffer and
overwrote the return address within the function getString(). When the function attempted to
execute a return instruction, control passed to some garbage address, and the program crashed.

But what if you could engineer the text file so that it overwrote the return address not with crazy
ASCII characters, but with the address of some code that you wanted to force the program to
execute? When getString() executed a RET, it wouldn't crash, it would go off and execute the code
you want it to.

But where could you put this extra code? What better place than within the text that's already been
read into buffer? So the hack goes like this:

1. Create a machine language program that does whatever you want the program to do and insert
it into the input file first.

2. Make sure that the input overflows the buffer just far enough that the return address gets
overwritten with the address of buffer itself.

3. When the program reads the text into the buffer, it will in effect load the hacker code into
buffer and then overwrite the return address.

4. When getString() tries to return to where it was called in main(), control will pass to the
beginning of buffer, where the hacker code gets executed.

 This sounds pretty tricky, and actually, it is. But remember that the hacker can execute your
program as often as he wants. When executed with a good debugger, he can figure out how
big to make the buffer and what address to use for buffer.

Just to show you that such a thing is possible, check out the following run:

 C:\CPP_Programs\Chap28\BufferOverflow>BufferOverflow
This program reads input from an input file
Enter the name of the file:BO_File.txt
You've been hacked!
C:\CPP_Programs\Chap28\BufferOverflow>

Here the program starts out like normal by prompting the user for an input file. This time the user
entered the file name BO_File.txt. In response, the program didn't output the contents of the file as
you might expect, nor did it crash. Instead, in response to this file, the program output the ominous
message “You've been hacked!” and exited. Notice in particular that the program didn't output the

normal “Press Enter to continue…”. This program went directly to Jail, didn't pass Go, and didn't
collect $200! Control never returned from getString() back to main().

In fact, the file BO_File.txt (which stands for Buffer Overflow File, by the way) contains a small
machine language program that outputs the message “You've been hacked!” and then calls exit(0)
to exit normally. In addition, it's crafted in just such a way that it overwrites the return address
with the beginning of the buffer to cause this program to be executed when getString() attempts to
return, just as described earlier.

 The details of a hack like this are very specific to exactly how the executable file is laid
out in memory. This particular version of BO_File.txt works on only versions of
BufferOverflow built for Windows with a particular version of gcc. This is not a limitation of
the overflow hack itself — I could create a version of BO_File.txt for Linux or Macintosh
and for a different version of gcc. Since you may not be using the same version of gcc that I
am, I have included the .exe executable in the BufferOverflow directory right next to the
source code. To execute this version, you will need to open a console in Windows, navigate
to the proper directory (in my case,
C:\CPP_Programs_from_Book\Chap28\BufferOverflow), and enter the command
BufferOverflow.

How did this hack work?
Let me start off by saying that the point of this chapter is not to teach you how to hack other people's programs — the
point is to keep you from being hacked yourself. Let me also say that the details of this hack have nothing to do with
learning C++ programming, so feel free to skip this sidebar if you want. However, it seems only fair that you get to see
how this hack worked in detail. If you are familiar with 80x86 assembly language, you will probably be able to follow this
small program. If not, then you may want to just accept my assurances that it works and kick the can on down the road.

The Hex Editor that comes with Code::Blocks displays the contents of the BO_Text.txt file as follows:

0000: 90 90 55 89 E5 31 C0 B0 F8 29 C4 90 90 EB 24
31 U 1) $1
0010: C0 8B 1C E4 36 88 43 13 B8 45 AA 47 01 WD 01
01 6 C U G -
0020: 01 01 FF D0 31 C0 50 B8 F9 FE 42 01 2D 01 01 01 1
P B -
0030: 01 FF D0 E8 D7 FF FF FF 59 6F 72 27 76 65 20
62 You've b
0040: 65 65 6E 20 68 61 63 6B 65 64 21 90 70 FD 28 00 een
hacked! p (

That's not very enlightening. Other than the string You've been hacked!, the remainder of the file appears to be garbage.
Let's try an 80x86 disassembler.

; set up a stack frame to protect our code from being
; overwritten when we make a function call below

; we do this by subtracting a big number like F8 from ESP
entryPoint:
 NOP ; 90
 NOP ; 90
 PUSH EBP ; 55
 MOV ESP,EBP ; 89 E5
 XOR EAX,EAX ; 31 C0
 MOV F8,AL ; B0 F8
 SUB EAX,ESP ; 29 C4

; the following can be replaced by an INT 3 (0xCC) during
debug and test
 NOP ; 90
 NOP ; 90

; put the address of the output message on the stack by
jumping to a call
 JMP label2 ; EB 24
label1:

; null terminate the string by writing a 0 to *ESP + 13
 XOR EAX,EAX ; 31 C0
 MOV [ESP],EBX ; 8B 1C E4
 MOV AL,SS:[BX+13] ; 36 88 43 13

; now call print (but can't have any zeros in the address)
; this value changes every time you rebuild the program!
 MOV print+01010101,EAX ; B8 45 AA 47 01
 SUB 01010101,EAX ; 2D 01 01 01 01
 CALL EAX ; FF D0 (calls 0047AA45)

; and then call exit passing a 0 (this call doesn't return)
 XOR EAX,EAX ; 31 C0
 PUSH EAX ; 50
 MOV exit+01010101,EAX ; B8 F9 FE 42 01
 SUB 01010101,EAX ; 2D 01 01 01 01
 CALL EAX ; FF D0 (calls 0041FDF8)

label2:
 CALL label1 ; E8 D7 FF FF FF
 "You've been hacked!"
 90 ; this will be overwritten the
terminating null

 address of entryPoint ; B0 FD 28 00
 ; this will overwrite the return
address

Of course, the disassembler didn't create the comments — I've added those to help you out a bit.

The most important part of this program is the last 4 bytes. These overwrite the return address with the address
0x0028FDB0, which is the address of buffer on the stack. How did I know that? I had to single-step the program with an
assembly language debugger and note the address of buffer myself.

The getString() function copies this file into the fixed length buffer, dutifully overwriting its own return address before
encountering the terminating NULL. It goes on to make a copy of this string out of heap memory, a process that we care
nothing about. When getString() tries to return to main(), control passes to the label entryPoint.

The first couple of instructions do nothing — NOP stands for No Op or No Operation. These are there in case the hack
misses the address by a few bytes.

The next few instructions are very important. After getString() executes a return, buffer is no longer in scope. This
means that all of your code is vulnerable to being overwritten if an interrupt occurs or the next time a function is called.
This small section of code moves the ESP around the small program so that it is not overwritten by the upcoming
function calls.

The next small section of code is where I hard-coded breakpoint instructions (INT3 or 0xCC) when I was debugging this
code. They appear as NOPs in the production version that you are seeing.

The next JMP instruction jumps down to the label label2. The CALL instruction located here first pushes the address of
the following instruction, which is actually the address of the string You've been hacked!, and then jumps back to label1.
This sleight of hand is the hacker's way of pushing the address of the string onto the stack. That done, the program then
makes sure that the string is null terminated by writing a 0 at the location 13 bytes deep into the string. (The XOR
EAX,EAX, which means EXCLUSIVE OR the contents of the EAX register with itself, puts a zero in the EAX register.)

The next block of code actually does nothing more than call the print(), which is located at 0x0046A944. Unfortunately,
the program can't call this function directly since its address contains a null byte. This null byte would cause the copying
of the block to terminate before overwriting the return address. To avoid this, I added a 1 to each byte of the address
stored in memory, and then I subtract this one back out before I use the address. The program copies 0x0147AA45 into
the EAX register and then subtracts 0x01010101 to calculate the desired address. The CALL EAX calls the resulting
address contained in the EAX register. This outputs the "You've been hacked!" message.

How did I know that print() was located at 0x0046A944? By examining the call to print() in main().

The final block calls the exit() function using the same trick to terminate the program. Control does not return from exit().

Avoiding buffer overflow — first attempt
You can look at the hackable error in getString() as a combination of two problems: The
programmer used a fixed-length buffer, and she assumed that the input would not overflow that
buffer. This error can be fixed by addressing either one of these assumptions.

The following NoBufferOverflow1 program addresses the second assumption by making sure that
the input does not exceed the size allocated to the fixed-size buffer:

 // NoBufferOverflow1 - this program avoids being hacked by
// limiting the amount of input into a fixed buffer
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>

#include <cstring>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 char buffer[64];

 // now input a string from the file
 // (but not more than our buffer will hold)
 int i;
 for(i = 0; i < 63; i++)
 {
 // read the next character into the buffer
 buffer[i] = cin.get();

 // exit the loop if we read a NULL or EOF
 if ((buffer[i] == 0) || cin.eof())
 {
 break;
 }
 }
 // make sure that the buffer is null terminated
 buffer[i] = '\0';

 // return a copy of the string to the caller
 char* pB = new char[strlen(buffer) + 1];
 if (pB != nullptr)
 {
 strcpy(pB, buffer);
 }
 return pB;
}

This version of getString() reads input from the file until either one of three things happen: the
function reads a null, the function reads an End of File, or the function reads 63 bytes.

 Remember to leave 1 extra byte for the terminating null.

The output of this program to all three files is as you would expect. The OK_File.txt outputs a

benign message:

 This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press any key to continue...

The program outputs only the first 63 bytes of Big_File.txt but, hey, it doesn't crash:

 This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz
Press any key to continue...

The program also reads in the first 63 bytes of our hack program contained in BO_File.txt, but
since it doesn't exceed the limits of buffer and therefore doesn't overwrite the return address, no
harm is done and there is no hack.

 This program reads input from an input file
Enter the name of the file:BO_File.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺
╨Φ╫ You've
Press Enter to continue...

 This is the normal way to avoid buffer overflow: Make sure that you don't copy more data
into the buffer than the buffer can hold, no matter what kind of garbage is contained in the
buffer.

Avoiding buffer overflow — second attempt
An alternative approach to available buffer overflow is to make sure that the buffer can grow to
accommodate the size of the input. There are several flexible-size containers in the Standard
Template Library. The most common is the vector class. (See Chapter 27 for details.)

 // NoBufferOverflow2 - this program avoids being hacked by
// using a variable-size buffer
#include <cstdio>
#include <cstdlib>

#include <fstream>
#include <iostream>
#include <cstring>
#include <string>
#include <vector>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller
char* getString(istream& cin)
{
 // create a variable-size buffer with an initial
 // length of 64 characters; however, this buffer can
 // grow if there are more than 64 characters in the
 // input file
 vector<char> buffer;
 buffer.reserve(64);

 // now input a string from the file
 for(;;)
 {
 // read the next character
 char c = cin.get();

 // exit the loop if we read a NULL or EOF
 if ((c == 0) || cin.eof())
 {
 break;
 }

 // add the character to the buffer and grow the
 // buffer if necessary to accommodate
 buffer.push_back(c);
 }
 // make sure that the buffer is null terminated
 buffer.push_back('\0');

 // return a copy of the string to the caller
 char* pB = new char[buffer.size()];
 if (pB != nullptr)
 {
 strcpy(pB, buffer.data());

 }
 return pB;
}

This version of getString() creates a variable-size vector of char objects. The function sets the
initial size of the vector to 64 characters, but buffer will grow automatically if necessary. Once in
the loop, the function uses the function push_back() to push each character onto the end of the
vector.

 The vector class overloads the bracket operator, so I could have said buffer [index] = c;
however, in order to improve performance, the bracket operator does not check for buffer
overflow. The push_back() method first checks that there is enough room in the buffer to
handle the character being added. If not, push_back() allocates another buffer, twice as big as
the first, and copies the contents of the smaller buffer into the larger. It repeats this process
every time it needs more room in the input buffer.

The output of NoBufferOverflow2 is indistinguishable from the fixed buffer version when reading
small files:

 This program reads input from an input file
Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

However, the output differs from the fixed buffer version when reading really large files:

 This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
Press Enter to continue...

You can see that this version of getString() reads the entire input file rather than chopping off input
at 63 bytes.

Similarly, NoBufferOverflow2 has no problem reading the buffer overflow hack file:

 This program reads input from an input file
Enter the name of the file:BO_file.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺
╨Φ╫ You've been hacked!Ép²(
Press Enter to continue...

A lot of garbage gets printed out, but no hack occurs.

Another argument for the string class
In a way, all of the buffer overflow examples in this chapter are a bit contrived. In actual practice,
the safest approach would have been to read input into an object of class string. Most of the
functions associated with string are designed to vary the size of the internal buffer to
accommodate the amount of input.

 // NoBufferOverflow3 - this program avoids being hacked by
// using the string class
#include <cstdio>
#include <cstdlib>
#include <fstream>
#include <iostream>
#include <string>

using namespace std;

// getString - read a string of input from the user prompt
// and return it to the caller. Terminate the
// string at a null or the end-of-file
string getString(istream& cin)
{
 string s;
 getline(cin, s, '\0');
 return s;
}

The call to getline() says read from cin into the string s until either a null or an end-of-file is
encountered (the EOF is implied in every call to getline()). The size of the buffer in s is not fixed
but expands to hold whatever is thrown at it.

Just as before, the output of this version is indistinguishable from the others when reading a benign
file:

 This program reads input from an input file

Enter the name of the file:OK_File.txt

We successfully read in:
This is benign input.
Press Enter to continue...

This output of this version is also identical to NoBufferOverflow2 for the oversized cases such as
Big_File.txt:

 This program reads input from an input file
Enter the name of the file:Big_File.txt

We successfully read in:
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789
abcdefghijklmnopqrstuvwxyz0123456789
Press Enter to continue...

And for the buffer overflow BO_File.txt case:

 This program reads input from an input file
Enter the name of the file:BO_file.txt

We successfully read in:
ÉÉUëσ1└░°)─ÉÉδ$1└ï∟Σ6êC‼╕U¬G☺-☺☺☺☺ ╨1└P╕∙■B☺-☺☺☺☺
╨Φ╫ You've been hacked!Ép²(
Press Enter to continue...

Again, garbage but no hack.

Why not always use string functions?
Given the relative simplicity of the NoBufferOverflow3 program compared with the other two,
why wouldn't a programmer always use the string class and its associated functions? In a way, the
answer is, "You should.” But you need to keep in mind that internally this program is every bit as
complicated as the vector-based NoBufferOverflow2 version. The getline() function is calling a
variable-size container such as vector for you. Even though you may not be making all these extra
calls, the calls are being made, and the performance of the function reflects that fact. The versions
of getString() that rely on fixed-size buffers are considerably faster than those that use variable-
size structures.

This difference is not noticeable if the program calls getString() only once or even only a

thousand times, but it can be considerable if this function were being called in the middle of a very
time critical loop.

Thus, the string or vector versions of getString() are the way to go for general use, but there may
be conditions that justify the use of fixed-size buffers.

 There is no measurable difference in performance between the version of getString() that
does not check for buffer overflow and the one that does. There is no justification for leaving
yourself exposed to hacking by buffer overflow even if you're trying to shave a few
instructions off of the execution time.

Let the operating system help
CPU manufacturers and operating system vendors have combined to devise ways to help avoid buffer overflow hacks.
Two of the most common are Address Space Layout Randomization (ASLR) and Data Execution Prevention (DEP).

One of the Achilles heels of the preceding hack is that I had to hard code the address of buffer on the stack. I could do
this because my version of Windows always loads that particular program, BufferOverflow.exe, the same way. But what
if it were to vary things a bit every time it executed the program? For example, what if the operating system added some
small constant to the stack pointer before executing the program each time? It wouldn't make any difference to the
program, but it would make it impossible for the hacker to know what value to overwrite the return address with since
the address of buffer would be slightly different every time the program executed. This moving memory around is known
as Address Space Layout Randomization (ASLR).

Another vulnerability of this hack is the fact that at least for a small period of time the processor was being asked to
execute machine instructions that were stored in an area reserved for data (namely the machine code that got loaded
into buffer). Most 80x86 processors have the ability known as Data Execution Prevention (DEP) to mark code segments
as either executable or not executable (using a flag known as the Nx flag). Operating systems that support DEP mark
memory segments where code is stored as executable while marking areas intended only for data, such as the stack
where buffer is stored as not executable. This buffer overflow hack would have been trapped by the processor as soon
as control passed to the beginning of buffer. The CPU would have thrown an exception that someone was trying to
execute instructions stored in non-executable memory — a no-no of the first order. The operating system would catch
the exception and immediately throw the miscreant program out of memory before any hacker harm could be done.

In Windows Vista and later, DEP is enabled for most Windows kernel processes and many applications to avoid
hackers from gaining administrator privileges but is often not enabled for user code. The Task Manager will show you
which processes have DEP enabled and which do not (you have to enable this column — by default, this column is not
displayed). This figure shows the output of the Task Manager on my Windows 7 machine while BufferOverflow is
executing. Notice that the process created is called BufferOverflow.exe*32, indicating that this is a 32-bit process. Also
notice that DEP is disabled for this process. There doesn't appear to be a way to tell gcc to generate code that enables
DEP on Windows.

Part VI

The Part of Tens

 Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

In this part…
Avoiding bugs
Preventing hacking
Visit www.dummies.com for great Dummies content online.

http://www.dummies.com

Chapter 29
Ten Ways to Avoid Adding Bugs to Your

Program
In This Chapter

 Enabling all warnings and error messages
 Using a clear and consistent coding style
 Limiting the visibility
 Adding comments to your code while you write it
 Single-stepping every path at least once
 Avoiding overloaded operators
 Heap handling
 Using exceptions to handle errors
 Declaring destructors to be virtual
 Avoiding multiple inheritance

In this chapter, I look at several ways to minimize errors, as well as ways to make debugging the
errors that are introduced easier.

Enable All Warnings and Error Messages
The syntax of C++ allows for a lot of error checking. When the compiler encounters a construct
that it can’t decipher, it has no choice but to generate an error message. Although the compiler
attempts to sync back up with the next statement, it does not attempt to generate an executable
program.

Disabling warning and error messages is a bit like unplugging the Check Engine light on your car
dashboard because it bothers you: Ignoring the problem doesn’t make it go away. If your compiler
has a Syntax Check from Hell mode, enable it.

Don’t start debugging your code until you remove or at least understand all warnings generated
during compilation. Enabling all warning messages if you then ignore them does you no good. If
you don’t understand the warning, look it up. What you don’t know will hurt you.

Adopt a Clear and Consistent Coding Style
Coding in a clear and consistent style not only enhances the readability of your program but also

results in fewer coding mistakes. Remember, the less brain power you have to spend deciphering
C++ syntax, the more you have left over for thinking about the logic of the program at hand. A
good coding style enables you to do the following with ease:

Differentiate class names, object names, and function names.
Know something about the object based on its name.
Differentiate preprocessor symbols from C++ symbols (that is, #defined objects should stand
out).
Identify blocks of C++ code at the same level (this is the result of consistent indentation).

In addition, you need to establish a standard module header that provides information about the
functions or classes in the module, the author (presumably, that’s you), the date, the version of the
compiler you’re using, and a modification history.

Finally, all programmers involved in a single project should use the same style. Trying to decipher
a program with a patchwork of different coding styles is confusing.

 You can let Code::Blocks maintain your source code style for you. Select Settings⇒Editor
and then select Source Formatter on the left. From the menu on the right, you can select your
preferred source code style. Now select Pluggins⇒Source Code Formatter to completely
reformat your modules.

Limit the Visibility
Limiting the visibility of class internals to the outside world is a cornerstone of object-oriented
programming. The class is responsible for its own internals; the application is responsible for
using the class to solve the problem at hand.

Specifically, limited visibility means that data members should not be accessible outside the class
— that is, they should be marked as protected. (Another storage class, private, is not discussed in
this book.) In addition, member functions that the application software does not need to know
about should also be marked protected. Don't expose any more of the class internals than
necessary.

A related rule is that public member functions should trust application code as little as possible.
Any argument passed to a public member function should be treated as though it might cause bugs
until it has been proven safe. A function such as the following is an accident waiting to happen:

 class Array
{
 public:
 explicit Array(int s)
 {

 size = 0;
 // new throws exception if memory not available
 pData = new int[s];
 size = s;
 }
 ~Array()
 {
 delete[] pData;
 size = 0;
 pData = nullptr;
 }
 //either return or set the array data
 int data(int index)
 {
 return pData[index];
 }
 int data(int index, int newValue)
 {
 int oldValue = pData[index];
 pData[index] = newValue;
 return oldValue;
 }
 protected:
 int size;
 int *pData;
};

The function data(int) allows the application software to read data out of Array. This function is
too trusting; it assumes that the index provided is within the data range. What if the index is not?
The function data(int, int) is even worse because it overwrites an unknown location.

What’s needed is a check to make sure that the index is in range. In the following, only the
data(int) function is shown for brevity:

 int data(unsigned int index)
{
 if (index >= size)
 {
 throw Exception("Array index out of range");
 }
 return pData[index];
}

Now an out-of-range index will be caught by the check. (Making index unsigned precludes the
necessity of adding a check for negative index values.)

Comment Your Code While You Write It
You can avoid errors if you comment your code while you write it rather than wait until everything
works and then go back and add comments. I can understand not taking the time to write
voluminous headers and function descriptions until later, but you always have time to add short
comments while writing the code.

Short comments should be enlightening. If they’re not, they aren’t worth much. You need all the
enlightenment you can get while you’re trying to make your program work. When you look at a
piece of code you wrote a few days ago, comments that are short, descriptive, and to the point can
make a dramatic contribution to helping you figure out exactly what it was you were trying to do.

In addition, consistent code indentation and naming conventions make the code easier to
understand. It’s all very nice when the code is easy to read after you’re finished with it, but it’s
just as important that the code be easy to read while you’re writing it. That’s when you need the
help.

Single-Step Every Path at Least Once
It may seem like an obvious statement, but I'll say it anyway: As a programmer, it’s important for
you to understand what your program is doing. Nothing gives you a better feel for what’s going on
under the hood than single-stepping the program with a good debugger. (Code::Blocks contains an
integrated debugger.)

Beyond that, as you write a program, you sometimes need raw material to figure out some bizarre
behavior. Nothing gives you that material better than single-stepping new functions as they come
into service.

Finally, when a function is finished and ready to be added to the program, every logical path needs
to be traveled at least once. Bugs are much easier to find when the function is examined by itself
rather than after it has been thrown into the pot with the rest of the functions — and your attention
has gone on to new programming challenges.

Avoid Overloading Operators
Other than using the assignment operator operator=(), you should hold off overloading operators
until you feel comfortable with C++. Overloading operators other than assignment is almost never
necessary and can significantly add to your debugging woes as a new programmer. You can get the
same effect by defining and using the proper public member functions instead.

After you’ve been C-plus-plussing for a few months, feel free to return and start overloading
operators to your heart’s content.

Manage the Heap Systematically

As a general rule, programmers should allocate and release heap memory at the same “level.” If a
member function MyClass::create() allocates a block of heap memory and returns it to the caller,
there should be a member function MyClass::release() that returns the memory to the heap.
Specifically, MyClass::create() should not require the parent function to release the memory. This
certainly doesn’t avoid all memory problems — the parent function may forget to call
MyClass::release() — but it does reduce the possibility somewhat.

Use Exceptions to Handle Errors
The exception mechanism in C++ is designed to handle errors conveniently and efficiently. In
general, you should throw an error indicator rather than return an error flag. The resulting code is
easier to write, read, and maintain. Besides, other programmers have come to expect it — you
wouldn’t want to disappoint them, would you?

It is not necessary to throw an exception from a function that returns a “didn't work” indicator if
this is a part of everyday life for that function. Consider a function lcd() that returns the least
common denominators of a number passed to it as an argument. That function will not return any
values when presented a prime number (a prime number cannot be evenly divided by any other
number). This is not an error — the lcd() function has nothing to say when given a prime.

Declare Destructors Virtual
Don't forget to create a destructor for your class if the constructor allocates resources (such as
heap memory) that need to be returned when the object reaches its demise. Having created a
destructor, don't forget to declare it virtual (almost) every time especially if you know that your
class is likely to be inherited and extended by subclasses. The problem is demonstrated in the
following code snippet:

 #include <iostream>

using namespace std;
class Person
{
 public:
 Person(const char* pszName)
 {
 psName = new string(pszName);
 }
 ~Person()
 {
 delete psName; psName = nullptr;
 }

 protected:

 string* psName;
};
class Student : public Person
{
 public:
 Student(const char* pszName, unsigned ID,
 const char* pszMajor)
 : Person(pszName), mID(ID)
 {
 psMajor = new string(pszMajor);
 }
 ~Student()
 {
 delete psMajor; psMajor = nullptr;
 }
 protected:
 unsigned mID;
 string* psMajor;
};

void fn()
{
 Person* p = new Student("Stew Dent", 1234, "Physics");
 delete p;
}

The function fn() creates a Student object. The Student class extends a class Person that allocates
heap memory to hold the person's name in the constructor and returns it in the destructor. In
addition, the Student constructor allocates memory that it returns in its own destructor.

The problem occurs when fn() stores the returned pointer to a Student in a variable declared
Person*. This is allowed because a Student IS_A Person (see Chapter 11 if this doesn't make
sense). The problem is that the delete p invokes the Person destructor but not the Student
destructor, resulting in a memory leak.

Making the following change to the class solves the problem:

 class Person
{
 public:
 Person(char* pszName) { psName = new string(pszName);}
 virtual ~Person() { delete psName; / nullptr; }

 protected:
 string* psName;

};

This causes C++ to invoke the destructor based on the pointer's actual type (in this case Student*)
and not its declared type (Person*).

Okay, so when should I not declare the destructor virtual? Declaring any member in a class virtual
means that C++ must add an extra pointer or two to each object of that class to keep track of its
virtual members. Thus, if you were to declare a lot of Person objects, an extra few pointers per
object might be a big deal.

As a general rule, if you expect someone to inherit your class then declare its destructor virtual.
And if you are about to inherit from an existing base class, make sure that its destructor is declared
virtual as well.

Avoid Multiple Inheritance
Multiple inheritance, like operator overloading, adds another level of complexity that you don’t
need to deal with when you’re just starting out. Fortunately, most real-world relationships can be
described with single inheritance.

After you feel comfortable with your level of understanding of C++, experiment with setting up
some multiple inheritance hierarchies. That way, you’ll be ready when the unusual situation that
requires multiple inheritance to describe it accurately arises.

Chapter 30
Ten Ways to Protect Your Programs from

Hackers
In This Chapter

 Protecting yourself from user input
 Handling failures in your code
 Maintaining a program log
 Following good development process
 Practicing good version control
 Authenticating users securely
 Managing your sessions
 Obfuscating your code
 Signing your code
 Using encryption securely

Chapter 28 describes things you should do in your code to avoid writing programs that are
vulnerable to hackers. It also describes features that you can enable if your operating system
supports them, such as Address Space Layout Randomization (ASLR) and Data Execution
Prevention (DEP). This chapter describes further steps you can take as part of the software
development process to defend yourself from the “hackerata.”

Don't Make Assumptions about User Input
The programmer has a frame of mind when writing a program. She's thinking about the problem
that she's trying to solve. Given that a person can keep only so many things in her mind at one time,
she's probably not thinking much beyond the immediate problem.

Programmer's tunnel vision is okay during the early development phase. At some point, however,
the programmer (or, better yet, some other programmer who had nothing to do with the
development of the code) needs to sit back and forget about the immediate problem. She needs to
ask herself, “How will this program react to illegal input?”

For example, in the field for the username, suppose someone enters several thousand garbage
characters. How will the program react? Ideally, you want the program to respond with an error
message like, “What the heck are these several thousand characters doing in the place where I
expected a name?” Barring that, a simple “I don't understand what you mean” is fine.

In fact, anything short of crashing or corrupting data is acceptable. This is because a crash
indicates a possible intrusion vector that a hacker can exploit to get your program to do something
that you don't want it to do.

 Not every crash is exploitable, but many crashes are. In fact, throwing lots of garbage
input at a program and looking for the crashes is called fuzzing the program and is often the
first step to finding exploits in deployed applications.

Here are some of the rules for checking input:

Make no assumptions about the length of the input.
Don't accept more input than you have room for in your fixed-length buffers (or used variable-
size buffers).
Check the range of every numerical value to make sure that it makes sense.
Check for and filter out special characters that may be used by a hacker to inject code.
Don't pass raw input onto another service, such as a database server.

And perform all of the same checks on the values returned from remote services. The hacker may
not be on the input side, he may be on the response side.

Handle Failures Gracefully
By this, I don't mean “Don't be a sore loser.” What I mean is that your program should respond
reasonably to failures that occur within the program. For example, if your call to a library function
returns a nullptr, the program should detect this and do something reasonable.

Reasonable here is to be understood fairly liberally. I don't necessarily mean that the program
needs to sniff around to figure out exactly why the function didn't return a reasonable address. It
could be that the request was for way too much memory due to unreasonable input. Or it could be
that the constructor detected some type of illegal input. It doesn't matter. The point is that the
program should restore its state as best it can and set up for the next bit of input without crashing
or corrupting existing data structures such as the heap.

In general this means the following:

Check for illegal input to interface functions and throw an exception when you detect it.
Catch and handle exceptions at the proper points.

 Some programmers are good at checking for illegal input and throwing exceptions when
problems occur, but they're not so good at catching exceptions and handling them properly. I
would give this type of programmer a B–. At least their programs are hard to exploit, but

they're easy to crash, making them vulnerable to the relatively less dangerous Denial of
Service attacks.

Another rule of thumb is to fail secure. For example, if you are trying to check someone's
password and the user inputs 2,000 characters replete with embedded SQL statements, not only is
it necessary to reject this garbage, but you must also not approve this nonsense as if it were a valid
password. Whenever you catch an exception, you should not assume things about the state of the
system (like the fact that the user has been properly identified and credentialed) that may not be
true. It is far better to require the user to reenter his credentials after a major failure than it would
be to assume that an invalid user has already been approved.

Maintain a Program Log
Create and maintain runtime logs that allow someone to reconstruct what happened in the event of
a security failure. (Actually, this is just as true in the event of any type of failure.) For example,
you probably want to log every time someone signs into or out of your system. You'll definitely
want to know who was logged into your system when a security event occurred — this is the group
that’s most at risk of a security loss and who are most suspicious when looking for culprits. In
addition, you'll want to log any system errors which would include most exceptions.

A real-world production program contains a large number of calls that look something like the
following:

 log(DEBUG, "User %s entered legal password", sUser);

 This is just an example. Every program will need some type of log function. Whether or
not it's actually called log() is immaterial.

This call writes the string User xxx entered legal password, where xxx is replaced by the name
contained in the variable sUser to the program log file when the system is in Debug mode. When
the program is not in Debug mode, this call does nothing — this is to avoid paying a performance
penalty for logging too much information when everything is going smoothly.

System log functions usually support anywhere from two to five levels of severity that dictate
whether log messages get written out or not. There are some failures that are always written to the
log file:

 if (validate(sUser, sPassword) == true)
{
 log(DEBUG, "User %s entered legal password", sUser);
}
else
{
 log(ALWAYS, "User %s entered illegal password", sUser);
}

Here, the program logs a valid user password only when the system is in Debug mode, but it
always logs an invalid user password just in case this represents an attempt by someone to break
into the system by guessing passwords.

Log files must be maintained. Generally, that means running a job automatically at midnight or
some other time of decreased use that closes the current log file, moves it into a separate directory
along with the day's date, and opens a new log file. This keeps a single log file from getting too
big and unwieldy. It also makes it a lot easier to go back to past log files to find a particular event.

In addition, reviewing log files is a boring, thankless, and therefore error-prone job. This makes it
a job best performed by computers. Most large systems have special programs that scan the log
file looking for anomalies that may indicate a problem. For example, one or two invalid
passwords per hour is probably nothing to worry about — people fat-finger their passwords all
the time. But a few thousand invalid passwords in an hour is probably worth getting excited about.
This may indicate an attempt at forced entry by brute-force guessing a password.

 An entire For Dummies book could be written on log file maintenance. There is way more
to this topic than I can cover here. Log files must be backed up daily and cleaned out
periodically lest they grow forever. In addition, someone or some program needs to monitor
these log files to detect problems such as repeated attempts to guess someone's password.

Maintaining a system log gives the system administrator the raw material that she needs to
reconstruct what happened in the event that the unthinkable happens and a hacker makes it into the
system.

Follow a Good Development Process
Every program should follow a well thought out, formal development process. This process
should include at least the following steps:

Collect and document requirements, including security requirements.
Review design.
Adhere to a coding standard.
Undergo unit test.
Conduct formal acceptance tests that are based on the original requirements.

In addition, peer reviews should be conducted at key points to verify that the requirements, design,
code, and test procedures are high quality and meet company standards.

 I am not against New Age development techniques such as recursive and agile
development. But agile is not a synonym for sloppy — just because you are using an agile

development process does not mean that you can skip any of the preceding development
steps.

 I am also not a Process Nazi. The preceding steps do not need to be as formal or as drawn
out for a small program involving one or two developers as they would be for a project that
employs dozens of systems analysts, developers, and testers. However, even small programs
can contain hackable security flaws, and it takes only one for your computer to become
somebody's bot.

Implement Good Version Control
Version control is a strange thing. It's natural not to worry about version 1.1 when you're under the
gun to get version 1.0 out the door and into the waiting users' outstretched hands. However,
version control is an important topic that must be addressed early because it must be built into the
program's initial design and not bolted on later.

One almost trivial aspect of version control is knowing which version of the program a user is
using. Now this sounds kind of stupid, but believe me, it's not. When a user calls up and says, “It
does this when I click on that,” the help desk really needs to know which version of the program
the user is using. He could be describing a problem in his version that's already been fixed in the
current version.

A program should have an overall version number that either gets displayed when the program
starts or is easily retrievable by the user (or both). Usually the version number is displayed as part
of the help system. In the code, this can be as simple as maintaining a global variable with the
version number that gets displayed when the user selects Help⇒About. The programmer is
responsible for updating this version number whenever a new version gets pushed out to
production. This Help window should also display the version number of any Web services that
the program uses, if possible.

A more pernicious aspect of version control is how to roll new versions of the application out to
users. This includes both the code itself and changes to the data structures, such as database tables,
that the application may access.

The code roll-out problem is trivial with browser-based Web applications — you simply load a
new version onto the server, and the next time the user clicks on your page, he gets the new
version. However, this problem is much more difficult for applications that install onto the user's
computer. The problem is that this is a great opportunity for hackers to exploit your application.

Suppose for example that you have devised a really cool update feature in your application. The
user clicks on Update Now, and the application goes back to the server and checks for a new
version. If a new version is available, the application automatically downloads the update and
installs it.

If a hacker figures out the protocol that your application uses for downloading updates and if that

protocol is not sufficiently secured, a hacker can convince your application on other people's
computers to download a specially modified version that she's created, complete with malware of
her own creation. Pretty soon your entire user base is infected with some type of malware that you
know nothing about.

I'm not saying that automatic updates can't be done securely — obviously they can, or companies
like Microsoft and Apple wouldn't do them. I'm just saying that if you do choose the automatic-
update route, you need to be very careful about how you implement security.

Even if you go the old fashioned route and have the user download a new
MyApplication_Setup.exe that installs the new application, you need to worry about whether some
hacker may have uploaded a version of your program laced with malware. Most download Web
sites are pretty careful about checking applications for malware. Another approach is to calculate
a secure checksum and include it with the download file. The user can then recalculate that
checksum on the file that he downloads. If the number he calculates doesn't match the number that
you uploaded, then the executable file may have been tampered with and the user shouldn't install
the program. Although this approach is pretty secure, very few users bother.

Authenticate Users Securely
User authentication should be straightforward: The user provides an account name and a
password, and your program looks the account name up in a table and compares the passwords. If
the passwords match, the user is authenticated. But when it comes to antihacking, nothing is that
simple.

First, never store the passwords themselves in the database. This is called storing them in the
clear and is considered very bad form. It's far too easy for a hacker to get his hands on the
password file. Instead, save off a secure transform of the password.

 This is known as a secure hash, and there are several such algorithms defined; the most
common are MD5, SHA1, and SHA256. All of these hash functions share several common
properties: It is very unlikely that two passwords will generate the same hash value, it is
virtually impossible to figure out the original password from the hashed value, and even a
small change in the password results in a wildly different hashed value.

Unfortunately no secure hash function is included in the standard C++ library, but there are
standard implementations of the most common algorithms in many open source libraries. In
addition, the algorithms, along with sample code for each of these, is available on Wikipedia.

In practice, these hash functions work as follows:

1. The user creates a password when he registers with the application.
2. The application appends a random string (known as a salt) to either the front or the end of the

password the user enters.

3. The application runs the resulting string through one of the secure hash algorithms.

For example, the SHA256 algorithm generates a 64-digit hexadecimal-number (256-bit) result.
The application stores this result and the salt string in a database table along with the user's
name.

Why salt? It's bad for the heart
The salt value adds security to the process by making it difficult for a hacker to deduce the password, even if he
intercepts the hashed value by sniffing the line. It does this in two ways:

One successful technique at guessing passwords is to construct a table of pre-hashed common passwords.
This is known as a password dictionary.

When the hashed password comes over the line, the hacker looks up the hashed value in the dictionary — this
is a very quick operation. If it is found, then the hacker knows the user's password. However, this technique will
not work, even if the user picks a common password, if a random long salt value has been added.

A salt can help make up for passwords that are too short.

For example, a hacker who knows that a user is lazy and doesn't use passwords with more than six characters
has no trouble trying all possible six-letter combinations to reconstruct a password from its hash. But a 6-letter
password combined with a random 30-letter hash cannot be calculated in advance. Lastly, a random salt value
gives two different users with the same password a different hash value.

However, salts aren't magic. The salt value is transmitted in the clear. If the user chooses a sufficiently short password
(say, four characters) and the hacker knows this, the hacker can still generate the hashes of all possible four-letter
passwords combined with the salt string and break the lazy user's password.

Remember that for a salt to be effective it needs to have three properties:

It must be generated separately for each user — using the same salt value over and over doesn't add any
security.

It must be sufficiently long (say 20 or 30 characters).

It must be random.

When the user logs in, the application goes through the following steps to verify the user's
password:

1. Uses the username to look up the salt values and the hashed password in the user table.
2. Adds the salt string to the user's password and calculates the secure hash.
3. Compares this newly calculated value to the value stored in the table. If it matches the value

stored in the table, then the user is authenticated.

This algorithm has the advantage that if a hacker were to get hold of the password table, it would
still be difficult for him to create a password that would match one of the existing hashes.

 It may be difficult but it is not impossible to find a password that matches a given hash
value, however — the MD5 algorithm, though popular, is particularly susceptible to this type
of attack. If you suspect that the password table has been compromised, you must invalidate
all of the user accounts and force people to securely reregister with the application.

Once you've authenticated a user, your application should assign that user a role that specifies the
types of things that he is allowed to do in the application. Consider a weekly status report
application. A normal user should only be able to edit entries that he creates. He may or may not
be able to read other users' entries. A person assigned the role of supervisor may be able to edit
other users' entries. Only the few users assigned the role of administrator should be able to edit the
tables, register new users, or change the roles of other users.

By keeping the number of administrators to a minimum, you reduce the number of vulnerabilities
that your application exposes. For example, if a hacker breaks into a normal user's account, he can
do little more than edit that user's status information. Bad but certainly not a disaster.

And, finally, your application should keep statistics on user log-ins. You should consider
deactivating the accounts of users that haven't used the system in a long time. In addition, the
application should react automatically to repeated attempts to log in with the wrong password by
either permanently, or at least temporarily, locking out the account. This will make it much more
difficult for a computer on the other end of a connection to run through thousands or millions of
possible passwords attempting to brute-force guess one.

Manage Remote Sessions
You can make certain assumptions when all of your application runs on a single computer. For one
thing, once the user has authenticated himself, you don't need to worry about him being transformed
into a different person (unless your application is intended to run at Hogwarts Academy of
Witchcraft and Wizardry). Applications that communicate with a remote server can't make this
assumption — a hacker who is listening on the line can wait until the user authenticates himself
and then hijack the session.

What can the security-minded programmer do to avoid this situation? You don't want to repeatedly
ask the user for his password just to make sure that the connection hasn’t been hijacked. The
alternative solution is to establish and manage a session. You do this by having the server send the
remote application a session cookie once the user has successfully authenticated himself.

 The term cookie is not very descriptive. It is actually a string of digits or characters. A
cookie can be in a file on the hard disk, or it can be held in RAM. Session cookies are
generally held in RAM for extra security. All modern browsers include support for cookies.

A cookie may include information such as a hash of the user's password and the time that the
session started. Throughout the session, the server periodically challenges the remote application

for a copy of the cookie. As long as the remote application presents a valid cookie, the server can
be reasonably certain that the person on the other end of the connection is the same person who
entered the correct password in the first place.

If at any time the remote application cannot produce a cookie that matches the cookie provided to
it at the beginning of the session, the server application automatically logs the user off and refuses
to listen to the remote application until it can log in again with valid username and password. If
the connection between the server and the application is lost, the server invalidates the cookie,
thereby forcing the application to reauthenticate. When the user logs out, the session cookie is also
invalidated.

In this way the server can be reasonably certain than some nefarious application hasn't managed to
hijack the user's session. But what about in the other direction? How does the application know
whether it can trust the server? A way to solve this problem is for the remote application to
generate a cookie back to the server that uniquely identifies it as a legitimate server.

A second approach, one that is much more secure, is to establish a secure session using a standard
protocol like Secure Socket Layer (SSL) or Transport Layer Security (TLS). While the details are
well beyond the scope of this book, these protocols allow the server and the remote application to
exchange passwords in a secure fashion. These passwords are then used to encrypt all
communication between the two for the remainder of the session. This encryption precludes a
hacker from intercepting the session — without the password, the hacker can't understand what the
server is saying nor trick the server into accepting its output. Further, since the messages are
encrypted with keys that are exchanged securely, a hacker can't even understand what information
is being exchanged between the server and the remote app if she happens to be listening on the
line.

Obfuscate Your Code
Code obfuscation is the act of making the executable as difficult for a hacker to understand as
possible.

 To obfuscate means to make obscure or unclear.

The logic is simple. The easier it is for a hacker to understand how your code works, the easier it
will be for the hacker to figure out vulnerabilities.

The single easiest step you can take is to make sure that you only ever distribute a Release version
of your program that does not include debug symbol information. When you first create the project
file, be sure to select that both a Debug and a Release version should be created, as shown in
Figure 30-1. The only real difference between these two is the compiler switches: The Debug
version includes the -g switch, which tells the compiler to include symbol table information in the
executable file. This symbol information tells the debugger where each line of code is located
within the executable and where each variable is stored. This information is necessary in order to
set break points and display the value of variables. But if this information is available in the

version distributed to customers, then the hacker will be given a blue print to each line of your
source code.

Figure 30-1: The wizard used to create programs allows you to create both a Debug and a Release version of the project.

The Release version of Code::Blocks does not include the gcc -g switch, so no symbol
information is included in its executable.

 The Release version may also include enhanced code optimizations to generate faster or
smaller executable files via one of the various gcc -O switches.

 You can add a Release version to an existing project in Code::Blocks by selecting
Project⇒Properties and then selecting the Build Targets tab to reveal a dialog box like that
shown in Figure 30-2. Select Add and fill in the name of the new target. Make sure that the
settings in this top-level dialog box match the Debug settings (for example, make sure that the
type is Console Application and that the target executable and object directories are filled
in). Then select Build options and make sure that the Release target does not have the -g
compiler switch set.

Figure 30-2: You can add a new build target from the Project⇒Properties window.

You will need to build the Debug version during Unit Test and Debug; but before final test and
release, you should tell Code::Blocks to generate the Release version of the program by selecting
Build⇒Select Target⇒Release⇒Build⇒Rebuild. To keep things straight, Code::Blocks puts the
Release executable in a separate target directory.

 Never, ever, distribute versions of your application with symbol information included.

You should always endeavor to make your source code as simple, clean, and clear as you possibly
can. However, you can purchase a commercial code obfuscator that mangles your program to make
it more difficult to reverse engineer. Some obfuscators work on the machine code, and some work
at the source level, generating a C++ program from your C++ that even you would be hard pressed
to follow. The critical thing about any obfuscator is that while it makes the code more difficult for
a human to follow, it does not change the meaning of the code in any way.

 Don't put too much faith in code obfuscators. It may make the code harder to reverse
engineer, but it's still not impossible. Given enough time, a determined hacker can reverse
engineer any program.

Sign Your Code With a Digital Certificate
Code signing works by generating a secure hash of the executable code and combining it with a
certificate issued by a valid certificate authority. The process works like this: The company
creating the program must first register itself with one of the certificate authorities. Let's use the
example of my great retirement hope, My Company, Inc. I must first convince one of the
commercially available certificate authorities that My Company, Inc., is in fact a real company and

not just some den of thieves or figment of my imagination. I do this by revealing its address, its
phone numbers, the names and addresses of its officers, the URL of its Web site, and so on. I may
also be asked to produce My Company's tax filings for the past few years to prove that this isn't
some bogus claim.

Once the certificate authority is convinced that My Company is a valid software entity, it issues a
certificate. This is a long number that anyone can use to verify that the holder of this certificate is
the famous My Company of San Antonio.

Executables generated by My Company can then be signed with this certificate. Signing an
executable does two things:

It creates a secure hash that would make it very difficult (as close to impossible as possible)
for a hacker to modify the executable without being detected by the user's computer.
It insures the user that this program was created by a legitimate software development
company.

When a user runs my program for the first time, the application presents its certificate and secure
hash combination to the operating system. The OS first calculates a hash of the executable and
compares it to the hash presented. If these match, then the OS is reasonably certain that the
executable is the same one that My Company shipped out of its doors. The OS then validates the
certificate to make sure that it is valid and hasn't been revoked. If that matches, the OS presents a
dialog box to the user that states this application is a valid executable from My Company, Inc., and
asks whether it should continue executing it.

Use Secure Encryption Wherever Necessary
Like any good warning, this admonition has several parts. First, “Use encryption wherever
necessary.” This tends to bring to mind thoughts of communicating bank account information over
the Internet, but you should think more general than that. Data that's being communicated, whether
over the Internet or over some smaller range, is known generally as Data in Motion. Data in
Motion should be encrypted unless it would be of no use to a hacker.

Data stored on the disk is known as Data at Rest. This data should also be encrypted if there is a
chance of the disk being lost, stolen, or copied. Businesses routinely encrypt the hard disks on
their company laptops in case a laptop gets stolen at the security scanner in the airport or left in a
taxi somewhere. Small portable storage devices such as thumb drives are especially susceptible to
being lost — data on these devices should be encrypted.

Encryption is not limited to data — the entire communication session should be encrypted if a
hacker could coax your application into revealing secrets by spoofing either the remote
application or the server.

But this section’s title says “Use Secure Encryption.” Don't make up your own encryption scheme
or try to improve upon existing schemes because the results won't be secure. Encryption
algorithms go through years of testing and evaluation by experts before they are adopted by the

public. Don't think that you are going to improve on them on your own. You are more likely to just
mess them up.

A good example of this lies in the Wi-Fi in your phone, tablet, or laptop. The original definition
for Wi-Fi (known as 802.11b) used a reasonably secure published algorithm for securing the
packets of information sent over the airwaves. It called this standard WEP (Wired Equivalent
Privacy, sometimes erroneously labeled Wireless Encryption Protocol). Unfortunately, the
designers of 802.11b didn't implement the protocol correctly, which left 802.11b hopelessly
vulnerable to hacking. By 2004, programs were available on the Web that could break a WEP-
encrypted data stream in three minutes or less. This flaw was recognized fairly quickly, and
subsequent standards replaced WEP with the more secure WPA2 (Wi-Fi Protected Access).

 When the holes in WEP were first discovered, the Wi-Fi Alliance, keepers of the 802.11
standard, knew they had a problem. The replacement encryption standard that they wanted
could not be implemented on many of the existing Wi-Fi Access Points that were built to
support WEP. Therefore, the Wi-Fi Alliance decided to release an intermediate standard
known as WPA1. This protocol implemented the original encryption algorithm the way it
should have been implemented in the first place. Since it was so similar to WEP, WPA1
could be implemented on existing hardware with relatively minor changes to the firmware.
Nevertheless, the fixes resulted in a significant increase in security over the flawed WEP
implementation. However, WPA1 was never intended to be anything more than a stop-gap.
The completely new WPA2 standard was introduced in 2004 and required on all devices
built after 2006. Secure applications no longer allow the use of WEP. For example, the
Payment Card Industry outlawed its use in 2008. Though I saw support for WPA1 as late as
2010, WPA2 is the state of the art as of this writing.

About the Author
Stephen R. Davis, CISSP (who goes by the name “Randy”) lives with his wife and two dogs in
Corpus Christi, Texas. Randy has three kids and two grand-kids with more on the way (grandkids,
not kids). Randy develops browser-based applications for Agency Consulting Group.

Dedication
To Janet, the love of my life.

Author’s Acknowledgments
I find it very strange that only a single name appears on the cover of any book, but especially a
book like this. In reality, many people contribute to the creation of a For Dummies book. From the
beginning, acquisitions editor Constance Santisteban, project editor Pat O'Brien, and my agent,
Claudette Moore, were involved in guiding and molding the book's content. During the
development of the seven editions of this book, I found myself hip-deep in edits, corrections, and
suggestions from a group of project editors, copyeditors, and technical reviewers — this book
would have been a poorer work but for their involvement. And nothing would have made it into
print without the aid of Suzanne Thomas, who coordinated the first and second editions of the
book, Susan Pink, who worked on the third and sixth editions, Katie Feltman who worked on the
sixth edition, and Danny Kalev, who did the technical review of the sixth and seventh editions.
Nevertheless, one name does appear on the cover and that name must take responsibility for any
inaccuracies in the text.

Finally, a summary of the animal activity around my house. For those of you who have not read any
of my other books, I should warn you that this has become a regular feature of my For Dummies
books.

I moved to the “big city” in 2005, which meant giving away our dogs Chester and Sadie. I tried to
keep our two Great Danes, Monty and Bonnie, but they were just too much for the backyard. We
were forced to give them away as well. I married my high school sweetheart in 2011 and moved
from Dallas back to my home town of Corpus Christi which meant adopting a new pair of dogs
(more like, they adopted me). Jack is a stubborn, black dog of an unidentifiable breed. Scruffy is
said to be a wire haired dachshund but you couldn't tell by his appearance as he stays shaved most
of the time.

If you are having problems getting started, I maintain a FAQ of common problems at
www.stephendavis.com. You can e-mail me questions from there if you don't see your
problem. I can't write your program (you don't know how often I get asked to do people's
homework assignments), but I try to answer most questions.

http://www.stephendavis.com

Publisher’s Acknowledgments
Acquisitions Editor: Connie Santisteban

Project Editor: Pat O’Brien

Copy Editor: Laura K. Miller

Technical Editor: Danny Kalev

Editorial Assistant: Anne Sullivan

Sr. Editorial Assistant: Cherie Case

Project Coordinator: Melissa Cossell

Cover Image: © iStockphoto.com/gavni

To access the cheat sheet specifically for this book, go to
www.dummies.com/cheatsheet/cplusplus.

Find out ”HOW” at Dummies.com

http://www.dummies.com/cheatsheet/cplusplus
http://www.dummies.com

Take Dummies with you everywhere you go!

Go to our Website

Like us on Facebook

Follow us on Twitter

Watch us on YouTube

Join us on LinkedIn

Pin us on Pinterest

Circle us on google+

Subscribe to our newsletter

http://www.dummies.com
http://www.dummies.com
http://www.facebook.com/fordummies
http://www.facebook.com/fordummies
http://www.twitter.com/fordummies
http://www.twitter.com/fordummies
http://www.youtube.com/user/fordummies
http://www.youtube.com/user/fordummies
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://www.linkedin.com/groups?home=&gid=3229946&trk=anet_ug_hm
http://pinterest.com/fordummies/
http://pinterest.com/fordummies/
https://plus.google.com/105265587979403653723
https://plus.google.com/105265587979403653723
http://www.dummies.com/go/newsletter
http://www.dummies.com/go/newsletter

Create your own Dummies book cover

Shop Online

http://covers.dummies.com/
http://covers.dummies.com/
http://dummiesmerchandise.com
http://dummiesmerchandise.com

	Title Page
	Table of Contents
	Introduction
	Part I: Getting Started with C++ Programming
	Chapter 1: Writing Your First C++ Program
	Chapter 2: Declaring Variables Constantly
	Chapter 3: Performing Mathematical Operations
	Chapter 4: Performing Logical Operations
	Chapter 5: Controlling Program Flow

	Part II: Becoming a Functional C++Programmer
	Chapter 6: Creating Functions
	Chapter 7: Storing Sequences in Arrays
	Chapter 8: Taking a First Look at C++ Pointers
	Chapter 9: Taking a Second Look at C++ Pointers
	Chapter 10: The C++ Preprocessor

	Part III: Introduction to Classes
	Chapter 11: Examining Object-Oriented Programming
	Chapter 12: Adding Class to C++
	Chapter 13: Point and Stare at Objects
	Chapter 14: Protecting Members: Do Not Disturb
	Chapter 15: “Why Do You Build Me Up, Just toTear Me Down, Baby?”
	Chapter 16: Making Constructive Arguments
	Chapter 17: The Copy/Move Constructor
	Chapter 18: Static Members: Can Fabric Softener Help?

	Part IV: Inheritance
	Chapter 19: Inheriting a Class
	Chapter 20: Examining Virtual Member Functions: Are They for Real?
	Chapter 21: Factoring Classes

	Part V: Security
	Chapter 22: A New Assignment Operator, Should You Decide to Accept It
	Chapter 23: Using Stream I/O
	Chapter 24: Handling Errors — Exceptions
	Chapter 25: Inheriting Multiple Inheritance
	Chapter 26: Tempting C++ Templates
	Chapter 27: Standardizing on the Standard Template Library
	Chapter 28: Writing Hacker-Proof Code

	Part VI: The Part of Tens
	Chapter 29: Ten Ways to Avoid Adding Bugs to Your Program
	Chapter 30: Ten Ways to Protect Your Programs from Hackers

	About the Author
	Cheat Sheet
	More Dummies Products

